Skip to main content
Log in

First protein affinity application of Cu2+-bound pure inorganic nanoflowers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Today, a new kind of materials is introduced to separation media day by day to increase the efficiency of the separation processes, and multiple-petalled nanostructured materials are one of them. In this study, new pure inorganic copper phosphate nanoflowers (pCP-NFs) were synthesized, and some environmental conditions affecting on binding mechanism with human serum albumin were evaluated via changing medium pH, temperature, initial human serum albumin (HSA) amount and salt concentrations. Before experimental studies, pCP-NFs were subjected to some characterization tests such as scanning electron microscopy, energy-dispersive X-ray, X-ray diffraction and Fourier transform infrared spectroscopy. Besides a lot of valuable instrumental data, some obtained experimental ones as follows: after Cu2+ ions attachment to pCP-NFs as ligand, maximum HSA adsorption capacity of obtained Cu2+-pCP-NFs was found as 225.7 mg/g with an initial concentration of 1.5 mg/mL at pH 7 and 25 °C. Langmuir and Freundlich adsorption equations were evaluated for determination of appropriate adsorption model in interaction, and Langmuir model found as the fittest one with a R2 of 0.9949 was also reviewed to determine Gibbs free energy between HSA and Cu2+-pCP-NFs interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ma Q, Liao J, Tian T et al (2017) A potential flower-like coating consisting of calcium-phosphate nanosheets on titanium surface. Chin Chem Lett 28:1893–1896. https://doi.org/10.1016/j.cclet.2017.07.028

    Article  CAS  Google Scholar 

  2. Lee SW, Cheon SA, Il KM, Park TJ (2015) Organic-inorganic hybrid nanoflowers: types, characteristics, and future prospects. J Nanobiotechnol 13:54. https://doi.org/10.1186/s12951-015-0118-0

    Article  CAS  Google Scholar 

  3. Altinkaynak C, Tavlasoglu S, Özdemir N, Ocsoy I (2016) A new generation approach in enzyme immobilization: organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability. Enzyme Microb Technol 93–94:105–112. https://doi.org/10.1016/j.enzmictec.2016.06.011

    Article  CAS  PubMed  Google Scholar 

  4. Yoo J, Park S-J, Lee S-W (2016) Facile synthesis of silica-encapsulated gold nanoflowers as surface-enhanced Raman scattering probes using silane-mediated sol-gel reaction. J Nanosci Nanotechnol 16:6289–6293. https://doi.org/10.1166/jnn.2016.12119

    Article  CAS  PubMed  Google Scholar 

  5. Cui J, Jia S (2017) Organic–inorganic hybrid nanoflowers: a novel host platform for immobilizing biomolecules. Coord Chem Rev 352:249–263. https://doi.org/10.1016/j.ccr.2017.09.008

    Article  CAS  Google Scholar 

  6. Shcharbin D, Halets-Bui I, Abashkin V et al (2019) Hybrid metal-organic nanoflowers and their application in biotechnology and medicine. Colloids Surf B Biointerfaces 182:110354. https://doi.org/10.1016/j.colsurfb.2019.110354

    Article  CAS  PubMed  Google Scholar 

  7. Baek SH, Roh J, Park CY et al (2020) Cu-nanoflower decorated gold nanoparticles-graphene oxide nanofiber as electrochemical biosensor for glucose detection. Mater Sci Eng C 107:110273. https://doi.org/10.1016/j.msec.2019.110273

    Article  CAS  Google Scholar 

  8. Das S, Samanta A, Jana S (2019) Light-driven synthesis of uniform dandelion-like mesoporous silica nanoflowers with tunable surface area for carbon dioxide uptake. Chem Eng J 374:1118–1126. https://doi.org/10.1016/j.cej.2019.05.114

    Article  CAS  Google Scholar 

  9. Qu Y, Huang R, Qi W et al (2019) Controllable synthesis of ZnO nanoflowers with structure-dependent photocatalytic activity. Catal Today. https://doi.org/10.1016/j.cattod.2019.07.056

    Article  Google Scholar 

  10. Yilmaz E, Ocsoy I, Ozdemir N, Soylak M (2016) Bovine serum albumin-Cu(II) hybrid nanoflowers: an effective adsorbent for solid phase extraction and slurry sampling flame atomic absorption spectrometric analysis of cadmium and lead in water, hair, food and cigarette samples. Anal Chim Acta 906:110–117. https://doi.org/10.1016/j.aca.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  11. Altinkaynak C, Tavlasoglu S, Kalin R et al (2017) A hierarchical assembly of flower-like hybrid Turkish black radish peroxidase-Cu2+ nanobiocatalyst and its effective use in dye decolorization. Chemosphere 182:122–128. https://doi.org/10.1016/j.chemosphere.2017.05.012

    Article  CAS  PubMed  Google Scholar 

  12. Önal B, Acet Ö, Sanz R et al (2019) Co-evaluation of interaction parameters of genomic and plasmid DNA for a new chromatographic medium. Int J Biol Macromol 141:1183–1190. https://doi.org/10.1016/j.ijbiomac.2019.09.068

    Article  CAS  PubMed  Google Scholar 

  13. Swain SK, Sarkar D (2013) Study of BSA protein adsorption/release on hydroxyapatite nanoparticles. Appl Surf Sci 286:99–103. https://doi.org/10.1016/j.apsusc.2013.09.027

    Article  CAS  Google Scholar 

  14. Galdino FE, Picco AS, Sforca ML et al (2020) Effect of particle functionalization and solution properties on the adsorption of bovine serum albumin and lysozyme onto silica nanoparticles. Colloids Surf B Biointerfaces 186:110677. https://doi.org/10.1016/j.colsurfb.2019.110677

    Article  CAS  PubMed  Google Scholar 

  15. Zhao L, Li L, Zhu C et al (2020) pH-responsive polymer assisted aptamer functionalized magnetic nanoparticles for specific recognition and adsorption of proteins. Anal Chim Acta 1097:161–168. https://doi.org/10.1016/j.aca.2019.11.001

    Article  CAS  PubMed  Google Scholar 

  16. Kaya M, Odabasi M, Mujtaba M et al (2016) Novel three-dimensional cellulose produced from trunk of Astragalus gummifer (Fabaceae) tested for protein adsorption performance. Mater Sci Eng C 62:144–151. https://doi.org/10.1016/j.msec.2016.01.047

    Article  CAS  Google Scholar 

  17. Shende P, Kasture P, Gaud RS (2018) Nanoflowers: the future trend of nanotechnology for multi-applications. Artif Cells Nanomed Biotechnol 46:413–422. https://doi.org/10.1080/21691401.2018.1428812

    Article  CAS  PubMed  Google Scholar 

  18. Acet Ö, Baran T, Erdönmez D et al (2018) O-carboxymethyl chitosan Schiff base complexes as affinity ligands for immobilized metal-ion affinity chromatography of lysozyme. J Chromatogr A 1550:21–27. https://doi.org/10.1016/j.chroma.2018.03.022

    Article  CAS  PubMed  Google Scholar 

  19. Acet Ö, Önal B, Sanz R et al (2019) Preparation of a new chromatographic media and assessment of some kinetic and interaction parameters for lysozyme. J Mol Liq 276:480–487. https://doi.org/10.1016/j.molliq.2018.12.037

    Article  CAS  Google Scholar 

  20. Liang Y, Liu J, Wang L et al (2019) Metal affinity-carboxymethyl cellulose functionalized magnetic graphene composite for highly selective isolation of histidine-rich proteins. Talanta 195:381–389. https://doi.org/10.1016/j.talanta.2018.11.074

    Article  CAS  PubMed  Google Scholar 

  21. Bakhshpour M, Derazshamshir A, Bereli N et al (2016) [PHEMA/PEI]–Cu(II) based immobilized metal affinity chromatography cryogels: application on the separation of IgG from human plasma. Mater Sci Eng C 61:824–831. https://doi.org/10.1016/j.msec.2016.01.005

    Article  CAS  Google Scholar 

  22. Baran NY, Acet Ö, Odabaşı M (2017) Efficient adsorption of hemoglobin from aqueous solutions by hybrid monolithic cryogel column. Mater Sci Eng C 73:15–20. https://doi.org/10.1016/j.msec.2016.12.036

    Article  CAS  Google Scholar 

  23. Bulut E, Sargin I, Arslan O et al (2017) In situ chitin isolation from body parts of a centipede and lysozyme adsorption studies. Mater Sci Eng C 70:552–563. https://doi.org/10.1016/j.msec.2016.08.048

    Article  CAS  Google Scholar 

  24. Serinbaş A, Önal B, Acet Ö et al (2020) A new application of inorganic sorbent for biomolecules: IMAC practice of Fe3+-nano flowers for DNA separation. Mater Sci Eng C 113:111020. https://doi.org/10.1016/j.msec.2020.111020

    Article  CAS  Google Scholar 

  25. Luo YK, Song F, Wang XL, Wang YZ (2017) Pure copper phosphate nanostructures with controlled growth: a versatile support for enzyme immobilization. CrystEngComm 19:2996–3002. https://doi.org/10.1039/C7CE00466D

    Article  CAS  Google Scholar 

  26. Gulmez C, Altinkaynak C, Özdemir N, Atakisi O (2018) Proteinase K hybrid nanoflowers (P-hNFs) as a novel nanobiocatalytic detergent additive. Int J Biol Macromol 119:803–810. https://doi.org/10.1016/j.ijbiomac.2018.07.195

    Article  CAS  PubMed  Google Scholar 

  27. Kragh-Hansen U (1990) Structure and ligand binding properties of human serum albumin. Dan Med Bull 37:57–84

    CAS  PubMed  Google Scholar 

  28. Meloun B, Morávek L, Kostka V (1975) Complete amino acid sequence of human serum albumin. FEBS Lett 58:134–137. https://doi.org/10.1016/0014-5793(75)80242-0

    Article  CAS  PubMed  Google Scholar 

  29. Porath J, Carlsson J, Olsson I, Belfrage G (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258:598–599. https://doi.org/10.1038/258598a0

    Article  CAS  PubMed  Google Scholar 

  30. Hansen P, Andersson L, Lindeberg G (1996) Purification of cysteine-containing synthetic peptides via selective binding of the α-amino group to immobilised Cu2+ and Ni2+ ions. J Chromatogr A 723:51–59. https://doi.org/10.1016/0021-9673(95)00806-3

    Article  CAS  PubMed  Google Scholar 

  31. Arnold FH (1991) Metal-affinity separations: a new dimension in protein processing. Nat Biotechnol 9:151–156. https://doi.org/10.1038/nbt0291-151

    Article  CAS  Google Scholar 

  32. Porath J, Olin B (1983) Immobilized metal affinity adsorption and immobilized metal affinity chromatography of biomaterials. Serum protein affinities for gel-immobilized iron and nickel ions. Biochemistry 22:1621–1630. https://doi.org/10.1021/bi00276a015

    Article  CAS  PubMed  Google Scholar 

  33. Gutiérrez R, Martín del Valle EM, Galán MA (2007) Immobilized metal-ion affinity chromatography: status and trends. Sep Purif Rev 36:71–111. https://doi.org/10.1080/15422110601166007

    Article  CAS  Google Scholar 

  34. Friedrichs B (1997) Th. Peters. Jr.: All about Albumin. Biochemistry, Genetics, and Medical Applications. XX and 432 pages, numerous figures and tables. Academic Press, Inc., San Diego, California, 1996. Price: 85.00 US $. Food/Nahrung. https://doi.org/10.1002/food.19970410631

  35. Melzak KA, Sherwood CS, Turner RFB et al (1996) Driving forces for DNA adsorption to silica in perchlorate solutions. J Colloid Interface Sci 181:635–644. https://doi.org/10.1006/jcis.1996.0421

    Article  CAS  Google Scholar 

  36. Gurbuz F, Ceylan Ş, Odabaşı M, Codd GA (2016) Hepatotoxic microcystin removal using pumice embedded monolithic composite cryogel as an alternative water treatment method. Water Res 90:337–343. https://doi.org/10.1016/j.watres.2015.12.042

    Article  CAS  PubMed  Google Scholar 

  37. Beltran L, Cutillas PR (2012) Advances in phosphopeptide enrichment techniques for phosphoproteomics. Amino Acids 43:1009–1024. https://doi.org/10.1007/s00726-012-1288-9

    Article  CAS  PubMed  Google Scholar 

  38. Nguyen TH, Elimelech M (2007) Plasmid DNA adsorption on silica: kinetics and conformational changes in monovalent and divalent salts. Biomacromol 8:24–32. https://doi.org/10.1021/bm0603948

    Article  CAS  Google Scholar 

  39. Smith MC, Furman TC, Pidgeon C (1987) Immobilized iminodiacetic acid metal peptide complexes. Identification of chelating peptide purification handles for recombinant proteins. Inorg Chem 26:1965–1969. https://doi.org/10.1021/ic00259a030

    Article  CAS  Google Scholar 

  40. Birger Anspach F (1994) Silica-based metal chelate affinity sorbents I. Preparation and characterization of iminodiacetic acid affinity sorbents prepared via different immobilization techniques. J Chromatogr A 672:35–49. https://doi.org/10.1016/0021-9673(94)80592-X

    Article  Google Scholar 

  41. Yip T-T, Nakagawa Y, Porath J (1989) Evaluation of the interaction of peptides with Cu(II), Ni(II), and Zn(II) by high-performance immobilized metal ion affinity chromatography. Anal Biochem 183:159–171. https://doi.org/10.1016/0003-2697(89)90184-X

    Article  CAS  PubMed  Google Scholar 

  42. Jiang W, Graham B, Spiccia L, Hearn MTW (1998) Protein selectivity with immobilized metal ion-tacn sorbents: chromatographic studies with human serum proteins and several other globular proteins. Anal Biochem 255:47–58. https://doi.org/10.1006/abio.1997.2395

    Article  CAS  PubMed  Google Scholar 

  43. Acet Ö, Aksoy NH, Erdönmez D, Odabaşı M (2018) Determination of some adsorption and kinetic parameters of α-amylase onto Cu+2-PHEMA beads embedded column. Artif Cells Nanomed Biotechnol 46:S538–S545. https://doi.org/10.1080/21691401.2018.1501378

    Article  CAS  PubMed  Google Scholar 

  44. Collins KD, Washabaugh MW (1985) The Hofmeister effect and the behaviour of water at interfaces. Q Rev Biophys 18:323–422. https://doi.org/10.1017/S0033583500005369

    Article  CAS  PubMed  Google Scholar 

  45. Sharma S, Agarwal GP (2001) Interactions of proteins with immobilized metal ions: a comparative analysis using various isotherm models. Anal Biochem 288:126–140. https://doi.org/10.1006/abio.2000.4894

    Article  CAS  PubMed  Google Scholar 

  46. Jawad AH, Abdulhameed AS (2020) Facile synthesis of crosslinked chitosan-tripolyphosphate/kaolin clay composite for decolourization and COD reduction of remazol brilliant blue R dye: optimization by using response surface methodology. Colloids Surf A Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2020.125329

    Article  Google Scholar 

  47. Jawad AH, Abdulhameed AS, Reghioua A, Yaseen ZM (2020) Zwitterion composite chitosan-epichlorohydrin/zeolite for adsorption of methylene blue and reactive red 120 dyes. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.07.014

    Article  PubMed  Google Scholar 

  48. Yavuz H, Odabaşi M, Akgöl S, Denizli A (2005) Immobilized metal affinity beads for ferritin adsorption. J Biomater Sci Polym Ed. https://doi.org/10.1163/1568562053783713

    Article  PubMed  Google Scholar 

  49. Cömert ŞC, Odabaşı M (2014) Investigation of lysozyme adsorption performance of Cu2+-attached PHEMA beads embedded cryogel membranes. Mater Sci Eng C 34:1–8. https://doi.org/10.1016/j.msec.2013.09.033

    Article  CAS  Google Scholar 

  50. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  51. Li N, Cheng W-Y, Pan Y-Z (2017) Adsorption of naphthalene on modified zeolite from aqueous solution. J Environ Prot (Irvine, Calif) 08:416–425. https://doi.org/10.4236/jep.2017.84030

    Article  CAS  Google Scholar 

  52. Jawad AH, Abdulhameed AS, Malek NNA, ALOthman ZA (2020) Statistical optimization and modeling for color removal and COD reduction of reactive blue 19 dye by mesoporous chitosan-epichlorohydrin/kaolin clay composite. Int J Biol Macromol 164:4218–4230. https://doi.org/10.1016/j.ijbiomac.2020.08.201

    Article  CAS  PubMed  Google Scholar 

  53. Jawad AH, Mubarak NSA, Abdulhameed AS (2020) Hybrid crosslinked chitosan-epichlorohydrin/TiO2 nanocomposite for reactive red 120 dye adsorption: kinetic, isotherm, thermodynamic, and mechanism study. J Polym Environ 28:624–637. https://doi.org/10.1007/s10924-019-01631-8

    Article  CAS  Google Scholar 

  54. Vernadakis A (1907) Zur Theorie der sogenannten Adsorption gelöster Stoffe. Zeitschrift für Chemie und Ind der Kolloide 2:15–15. https://doi.org/10.1007/BF01501332

    Article  Google Scholar 

  55. Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2005.12.043

    Article  PubMed  Google Scholar 

  56. Erzengin M, Ünlü N, Odabasi M (2011) A novel adsorbent for protein chromatography: supermacroporous monolithic cryogel embedded with Cu2+-attached sporopollenin particles. J Chromatogr A 1218:484–490. https://doi.org/10.1016/j.chroma.2010.11.074

    Article  CAS  PubMed  Google Scholar 

  57. Zhou X, Zhou X (2014) The unit problem in the thermodynamic calculation of adsorption using the Langmuir equation. Chem Eng Commun 201:1459–1467. https://doi.org/10.1080/00986445.2013.818541

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The Scientific and Technological Research Council of Turkey (Grant Number:118Z037) and by Belarusian Republican Foundation for Fundamental Research, Grant B18TUB-001. Authors gratefully acknowledge use of the services and facilities of Technology Research and Implementation Center of Erciyes University (TAUM) and Scientific and Technological Application and Research Center of Aksaray University (ASUBTAM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nalan Özdemir or Mehmet Odabaşı.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Önal, B., Acet, Ö., Dzmitruk, V. et al. First protein affinity application of Cu2+-bound pure inorganic nanoflowers. Polym. Bull. 79, 3233–3251 (2022). https://doi.org/10.1007/s00289-021-03557-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03557-5

Keywords

Navigation