Skip to main content

Advertisement

Log in

Influence of lignite fly ash on the structural and mechanical properties of banana fiber containing epoxy polymer matrix composite

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present work deals with the influence of lignite fly ash (LFA) on the physical properties of polymer matrix composite (PMC). The study was conducted on different compositions of PMC which were prepared using epoxy polymer (EP) amalgamated with LFA and banana fiber (BF) by hand layup process. The different compositions were prepared in the combination of (80-x)EP-20BF-xLFA (where x = 0, 2.5, 5, 7.5, 10wt%). LFA was added in increasing amounts ranging from 2.5 to 10%, and the physical properties were evaluated. An increase in mechanical properties such as tensile strength, compressive strength, flexural strength and EPBF hardness was observed after the addition of LFA. The observed tensile, flexural strengths and Barcol hardness for the sample containing 5wt% of LFA contained to 53.280 MPa, 37.756 MPa and 13.66, respectively, were showed its better mechanical strength than all other samples. The observed scanning electron microscope (SEM) images showed the minimal voids and fiber pullouts were observed during the addition 5% of LFA contained. Collectively, from the results, it can be deduced that PMC with 5% LFA has better mechanical strength than all the other prepared PMC samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boopalan M, Niranjanaa M, Umapathy MJ (2013) Composites: part B study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites. Compos Part B 51:54–57. https://doi.org/10.1016/j.compositesb.2013.02.033

    Article  CAS  Google Scholar 

  2. Sathishkumar GK, Rajkumar G, Srinivasan K, Umapathy MJ (2018) Structural analysis and mechanical properties of lignite fly-ash-added jute–epoxy polymer matrix composite. J ReinfPlast Compos 37:90–104. https://doi.org/10.1177/0731684417735183

    Article  CAS  Google Scholar 

  3. Ramachandran M, Bansal S, Raichurkar P (2016) Experimental study of bamboo using banana and linen fiber reinforced polymeric composites author. PerspectSci. https://doi.org/10.1016/j.pisc.2016.04.063

    Article  Google Scholar 

  4. Gupta MK, Srivastava RK (2014) Tensile and flexural properties of sisal fibre reinforced epoxy composite: a comparison between unidirectional and mat form of fibres. Procedia Mater Sci 5:2434–2439. https://doi.org/10.1016/j.mspro.2014.07.489

    Article  CAS  Google Scholar 

  5. Maurya HO, Gupta MK, Srivastava RK, Singh H (2015) Study on the mechanical properties of epoxy composite using short sisal fibre. Mater Today Proc 2:1347–1355. https://doi.org/10.1016/j.matpr.2015.07.053

    Article  CAS  Google Scholar 

  6. El-Sayed AA, El-Sherbiny MG, Abo-El-Ezz AS, Aggag GA (1995) Friction and wear properties of polymeric composite materials for bearing applications. Wear 184:45–53. https://doi.org/10.1016/0043-1648(94)06546-2

    Article  CAS  Google Scholar 

  7. Kaewkuk S, Sutapun W, Jarukumjorn K (2013) Effects of interfacial modification and fiber content on physical properties of sisal fiber/polypropylene composites. Compos Part B Eng 45:544–549. https://doi.org/10.1016/j.compositesb.2012.07.036

    Article  CAS  Google Scholar 

  8. Cheung HY, Ho MP, Lau KT et al (2009) Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos Part B Eng 40:655–663. https://doi.org/10.1016/j.compositesb.2009.04.014

    Article  CAS  Google Scholar 

  9. Yan L, Chouw N, Yuan X (2012) Improving the mechanical properties of natural fibre fabric reinforced epoxy composites by alkali treatment. J ReinfPlast Compos 31:425–437. https://doi.org/10.1177/0731684412439494

    Article  CAS  Google Scholar 

  10. Kim JT, Netravali AN (2010) Mercerization of sisal fibers: effect of tension on mechanical properties of sisal fiber and fiber-reinforced composites. Compos Part A ApplSciManuf 41:1245–1252. https://doi.org/10.1016/j.compositesa.2010.05.007

    Article  CAS  Google Scholar 

  11. Venkateshwaran N, ElayaPerumal A, Arunsundaranayagam D (2013) Fiber surface treatment and its effect on mechanical and visco-elastic behaviour of banana/epoxy composite. Mater Des 47:151–159. https://doi.org/10.1016/j.matdes.2012.12.001

    Article  CAS  Google Scholar 

  12. Sgriccia N, Hawley MC, Misra M (2008) Characterization of natural fiber surfaces and natural fiber. Compos: Part A 39:1632–1637. https://doi.org/10.1016/j.compositesa.2008.07.007

    Article  CAS  Google Scholar 

  13. Ramesh M, Sri AnandaAtreya T, Aswin US et al (2014) Processing and mechanical property evaluation of banana fiber reinforced polymer composites. ProcediaEng 97:563–572. https://doi.org/10.1016/j.proeng.2014.12.284

    Article  CAS  Google Scholar 

  14. Saheb DN, Jog JP (1999) 0Deec52E7C9B24B713000000.Pdf. J AdvPolymTechnol 18:351–363. https://doi.org/10.1002/(SICI)1098-2329(199924)18

    Article  CAS  Google Scholar 

  15. Bendigeri DC, Jawlesh HN (2016) Investigation of bending behaviour of polymer matrix composite with jute fibers as reinforcement. Int J AdvEng Res Sci 3:73–77. https://doi.org/10.22161/ijaers/3.12.15

    Article  Google Scholar 

  16. Soni HK, Telang A, Purohit R, Dubey N (2017) Development, testing and characterization of epoxy-cotton fiber. Polym Compos 3:53–56

    Google Scholar 

  17. Mishra V, Biswas S (2013) Physical and mechanical properties of bi-directional jute fiber epoxy composites. ProcediaEng 51:561–566. https://doi.org/10.1016/j.proeng.2013.01.079

    Article  CAS  Google Scholar 

  18. Sanadi AR, Prasad SV, Rohatgi PK (1986) Sunhemp fibre-reinforced polyester. J Mater Sci 21:4299–4304

    Article  CAS  Google Scholar 

  19. Ismail H, Jaffri RM (1997) Curing characteristics and mechanical properties of oil palm wood flour reinforced epoxidized natural rubber composites. Int J Polym Mater PolymBiomater 36:241–254. https://doi.org/10.1080/00914039708029418

    Article  CAS  Google Scholar 

  20. Lakshumu Naidu A, Kona S (2018) Experimental study of the mechanical properties of banana fiber and groundnut shell ash reinforced epoxy hybrid composite. Int J Eng Trans A Basics 31:659–665. https://doi.org/10.5829/ije.2018.31.04a.18

    Article  Google Scholar 

  21. Chindaprasirt P, Chareerat T, Sirivivatnanon V (2007) Workability and strength of coarse high calcium fly ash geopolymer. CemConcr Compos 29:224–229. https://doi.org/10.1016/j.cemconcomp.2006.11.002

    Article  CAS  Google Scholar 

  22. Moutsatsou A, Itskos G, Vounatsos P et al (2010) Microstructural characterization of PM-Al and PM-Al/Si composites reinforced with lignite fly ash. Mater SciEng A 527:4788–4795. https://doi.org/10.1016/j.msea.2010.04.001

    Article  CAS  Google Scholar 

  23. David Raja Selvam J, Robinson Smart DS, Dinaharan I (2013) Microstructure and some mechanical properties of fly ash particulate reinforced AA6061 aluminum alloy composites prepared by compocasting. Mater Des 49:28–34. https://doi.org/10.1016/j.matdes.2013.01.053

    Article  CAS  Google Scholar 

  24. Hsissou R, Berradi M, El Bouchti M et al (2019) Synthesis characterization rheological and morphological study of a new epoxy resin pentaglycidyl ether pentaphenoxy of phosphorus and their composite (PGEPPP/MDA/PN). Polym Bull 76:4859–4878. https://doi.org/10.1007/s00289-018-2639-9

    Article  CAS  Google Scholar 

  25. Bekhta A, Hsissou R, Elharfi A (2020) Evaluation of mechanical compressive strength of cementitious matrix with 12% of IER formulated by modified polymer (NEPS) at different percentages. Sci Rep 10:1–8. https://doi.org/10.1038/s41598-020-59482-6

    Article  CAS  Google Scholar 

  26. Hsissou R, Bekhta A, Dagdag O et al (2020) Rheological properties of composite polymers and hybrid nanocomposites. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e04187

    Article  PubMed  PubMed Central  Google Scholar 

  27. Somasundaram P, Kathiresan S, Mathu S et al (2017) Structural and phase transition of Mg-doped on Mn-site in La0.7Sr0.3MnO3 bulk/nanostructured perovskite characterised through online ultrasonic technique. South African J ChemEng 23:50–61. https://doi.org/10.1016/j.sajce.2016.12.001

    Article  Google Scholar 

  28. Lenin N, Sakthipandi K, Rajesh Kanna R, Rajkumar G (2018) Electrical, magnetic and structural properties of polymer-blended lanthanum-added nickel nano-ferrites. Ceram Int 44:21866–21873. https://doi.org/10.1016/j.ceramint.2018.08.295

    Article  CAS  Google Scholar 

  29. Coronado M, Blanco T, Quijorna N et al (2015) Types of waste, properties and durability of toxic waste-based fired masonry bricks. Elsevier Ltd, Amsterdam

    Book  Google Scholar 

  30. Smith WF, Hashemi J (2006) Materials science and Engineering, (Eighth edn) pp 164–223

  31. Manimaran R, Jayakumar I, Mohammad Giyahudeen R, Narayanan L (2018) Mechanical properties of fly ash composites—a review. Energy Sources, Part A Recover Util Environ Eff 40:887–893. https://doi.org/10.1080/15567036.2018.1463319

    Article  Google Scholar 

  32. Chousidis N, Rakanta E, Ioannou I, Batis G (2015) Mechanical properties and durability performance of reinforced concrete containing fly ash. Constr Build Mater 101:810–817. https://doi.org/10.1016/j.conbuildmat.2015.10.127

    Article  Google Scholar 

  33. Arthanarieswaran VP, Kumaravel A, Kathirselvam M (2014) Evaluation of mechanical properties of banana and sisal fiber reinforced epoxy composites: Influence of glass fiber hybridization. Mater Des 64:194–202. https://doi.org/10.1016/j.matdes.2014.07.0581

    Article  CAS  Google Scholar 

  34. Kulkarni AG, Satyanarayana KG, Rohatgi PK, Vijayan K (1983) Mechanical properties of banana fibres (Musa sepientum). J Mater Sci 18:2290–2296. https://doi.org/10.1007/BF00541832

    Article  Google Scholar 

  35. Pothan LA, George J, Thomas S (2002) Effect of fiber surface treatments on the fiber-matrix interaction in banana fiber reinforced polyester composites. Compos Interfaces 9:335–353. https://doi.org/10.1163/156855402760194692

    Article  CAS  Google Scholar 

  36. Obed D’Souza R, Shettigar YP, PrajwalByndoor D et al (2018) Experimental Analysis on the Mechanical Properties of Glass-Epoxy composite with Fly ash as a filler material. IOP ConfSer Mater SciEng. https://doi.org/10.1088/1757-899X/376/1/012065

    Article  Google Scholar 

  37. Gummadi J, Kumar GV, Rajesh G (2012) Evaluation of flexural properties of fly ash filled polypropylene composites. Int J Mod Eng Res 2:2584–2590

    Google Scholar 

  38. Alavudeen A, Rajini N, Karthikeyan S et al (2015) Mechanical properties of banana/kenaffiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation. Mater Des 66:246–257. https://doi.org/10.1016/j.matdes.2014.10.067

    Article  CAS  Google Scholar 

  39. Webo W, Masu L, Maringa M (2018) The impact toughness and hardness of treated and untreated sisal fibre-epoxy resin composites. Adv Mater SciEng. https://doi.org/10.1155/2018/8234106

    Article  Google Scholar 

  40. Affatato S (2014) Tribological interactions of modern biomaterials used in total hip arthroplasty (THA). Perspect Total Hip Arthroplast. https://doi.org/10.1533/9781782420392.2.99

    Article  Google Scholar 

  41. Brostow W, HaggLobland HE, Hnatchuk N, Perez JM (2017) Improvement of scratch and wear resistance of polymers by fillers including nanofillers. Nanomaterials. https://doi.org/10.3390/nano7030066

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nuruzzaman DM, Chowdhury MA (2012) Friction and wear of polymer and composites. Composites. https://doi.org/10.5772/48246

    Article  Google Scholar 

  43. Cecen V, Seki Y, Sarikanat M, Tavman IH (2008) FTIR and SEM analysis of polyester- and epoxy-based composites manufactured by VARTM process. J ApplPolymSci 108:2163–2170. https://doi.org/10.1002/app.27857

    Article  CAS  Google Scholar 

  44. Ahmad B, Ashfaq M, Joy A et al (2017) Fabrication and characterization of an eco-friendly biodegradable epoxy/chitosan composites. Am J Mater Sci 7:166–169. https://doi.org/10.5923/j.materials.20170705.08

    Article  CAS  Google Scholar 

  45. Xue QF, Lu SG (2008) Microstructure of ferrospheres in fly ashes: SEM, EDX and ESEM analysis. J Zhejiang UnivSci A 9:1595–1600. https://doi.org/10.1631/jzus.A0820051

    Article  CAS  Google Scholar 

  46. Terzić A, Pavlović L, Miličić L (2013) Evaluation of lignite fly ash for utilization as component in construction materials. Int J Coal Prep Util 33:159–180. https://doi.org/10.1080/19392699.2013.776960

    Article  CAS  Google Scholar 

  47. Sharma NK, Kumar V (2013) Studies on properties of banana fiber reinforced green composite. J ReinfPlast Compos 32:525–532. https://doi.org/10.1177/0731684412473005

    Article  CAS  Google Scholar 

  48. Cruz J, Fangueiro R (2016) Surface modification of natural fibers: a review. ProcediaEng 155:285–288. https://doi.org/10.1016/j.proeng.2016.08.030

    Article  CAS  Google Scholar 

  49. Zhao B, Yu T, Ding W, LI X (2017) Effects of pore structure and distribution on strength of porous Cu-Sn-Ti alumina composites. Chinese J Aeronaut 30:2004–2015. https://doi.org/10.1016/j.cja.2017.08.008

    Article  Google Scholar 

  50. Onuoha C, Onyemaobi OO, Anyakwo CN, Onuegbu GC (2017) Effect of filler content and particle size on the mechanical properties of corn cob powder filled recycled polypropylene composites. Am J Eng Res 6:72–79

    Google Scholar 

  51. Buitrago B, Jaramillo F, Gómez M (2015) Some properties of natural fibers (sisal, pineapple, and banana) in comparison to man-made technical fibers (aramide, glass, carbon). J Nat Fibers 12:357–367. https://doi.org/10.1080/15440478.2014.929555

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by DST-FIST Programme No.SR/FST/College-110/2017, Government of India in Easwari Engineering College, Chennai, Tamil Nadu, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.K. Sathishkumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathishkumar, G., Gautham, G., Shankar, G.G. et al. Influence of lignite fly ash on the structural and mechanical properties of banana fiber containing epoxy polymer matrix composite. Polym. Bull. 79, 285–306 (2022). https://doi.org/10.1007/s00289-020-03524-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03524-6

Keywords

Navigation