Skip to main content
Log in

Microwave absorption properties of polyaniline (PAni) with various amount of carbonaceous material (CM)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This study investigates the microwave absorption properties of polyaniline (PAni) with varying carbonaceous material, CM (Fullerene,C60) contents. PAni nanocomposites were prepared with varying contents of C60 ranging from 5 to 40% through a chemical oxidation method by using carboxylic acid as the dopant. The functional groups of PAni nanocomposites were validated by Fourier Transform Infrared Spectroscopy (FTIR) and Ultraviolet–visible (UV–Vis) Spectroscopy analyses. The surface morphology of nanocomposites and the presence of titanium dioxide (TiO2) and C60 were confirmed by Field Emission Scanning Electron Microscopy (FESEM) and X-ray Diffractometry (XRD), respectively. Microwave absorption studies were carried out using Microwave Vector Network Analyzer (MVNA) from 0.5 to 18.0 GHz. The study showed that PAni nanocomposites with 10% of C60 formed the nanorods/nanotubes with the biggest diameter of 200 nm as compared to other PAni nanocomposites. It was found that PAni nanocomposites with 10% C60 also recorded the highest electrical conductivity and relative permittivity of 1.708 × 10–1 S/cm and 9.97, respectively. The nanocomposite that was formulated with 10% of C60 showed an improvement of interchain and intrachain charge transfer as well as molecular polarization along the PAni backbone. Hence, it eventually reduces the electrical energy dissipated by PAni, and finally enhances the microwave absorption properties with the highest reflection loss (RL) of −61.3 dB at 9 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116:2658–2667. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  2. Zhang L, Bi S, Liu M (2020) Lightweight electromagnetic interference shielding materials and their mechanisms. Electromagn Mater Devices. https://doi.org/10.5772/intechopen.82270

    Article  Google Scholar 

  3. Xia X, Wang Y, Zhong Z, Weng GJ (2016) A theory of electrical conductivity, dielectric constant, and electromagnetic interference shielding for lightweight graphene composite foams. J Appl Phys. https://doi.org/10.1063/1.4961401

    Article  Google Scholar 

  4. Kumar P, Narayan Maiti U, Sikdar A et al (2019) Recent advances in polymer and polymer composites for electromagnetic interference shielding: review and future prospects. Polym Rev. https://doi.org/10.1080/15583724.2019.1625058

    Article  Google Scholar 

  5. Oh HJ, Dao VD, Choi HS (2018) Electromagnetic shielding effectiveness of a thin silver layer deposited onto PET film via atmospheric pressure plasma reduction. Appl Surf Sci 435:7–15. https://doi.org/10.1016/j.apsusc.2017.11.043

    Article  CAS  Google Scholar 

  6. Singh R, Kulkarni SG (2014) Nanocomposites based on transition metal oxides in polyvinyl alcohol for EMI shielding application. Polym Bull 71:497–513. https://doi.org/10.1007/s00289-013-1073-2

    Article  CAS  Google Scholar 

  7. Chung DDL (2000) Materials for electromagnetic interference shielding. J Mater Eng Perform 9:350–354

    Article  CAS  Google Scholar 

  8. Jing X, Wang Y, Zhang B (2005) Electrical conductivity and electromagnetic interference shielding of polyaniline/polyacrylate composite coatings. J Appl Polym Sci 98:2149–2156. https://doi.org/10.1002/app.22387

    Article  CAS  Google Scholar 

  9. Belaabed B, Wojkiewicz JL, Lamouri S et al (2012) Synthesis and characterization of hybrid conducting composites based on polyaniline/magnetite fillers with improved microwave absorption properties. J Alloys Compd 527:137–144. https://doi.org/10.1016/j.jallcom.2012.02.179

    Article  CAS  Google Scholar 

  10. Pandey S, Ramontja J (2016) Rapid, facile microwave-assisted synthesis of xanthan gum grafted polyaniline for chemical sensor. Int J Biol Macromol 89:89–98. https://doi.org/10.1016/j.ijbiomac.2016.04.055

    Article  CAS  PubMed  Google Scholar 

  11. Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115:4744–4822. https://doi.org/10.1021/cr500304f

    Article  CAS  PubMed  Google Scholar 

  12. Mitra M, Kulsi C, Chatterjee K et al (2015) Reduced graphene oxide-polyaniline composites: synthesis, characterization and optimization for thermoelectric applications. RSC Adv 5:31039–31048. https://doi.org/10.1039/c5ra01794g

    Article  CAS  Google Scholar 

  13. Chen T, Qiu J, Zhu K, Li J (2016) Electro-mechanical performance of polyurethane dielectric elastomer flexible micro-actuator composite modified with titanium dioxide-graphene hybrid fillers. Mater Des 90:1069–1076. https://doi.org/10.1016/j.matdes.2015.11.068

    Article  CAS  Google Scholar 

  14. Mo TC, Wang HW, Chen SY, Yeh YC (2008) Synthesis and dielectric properties of polyaniline/titanium dioxide nanocomposites. Ceram Int 34:1767–1771. https://doi.org/10.1016/j.ceramint.2007.06.002

    Article  CAS  Google Scholar 

  15. Phang SW, Kuramoto N (2008) Development and investigation of polyaniline micro/nanocomposites that possess moderate conductivity, dielectric and magnetic properties. Polym J 40:25–32. https://doi.org/10.1295/polymj.PJ2007049

    Article  CAS  Google Scholar 

  16. Kumar A, Kumar V, Awasthi K (2018) Polyaniline–carbon nanotube composites: preparation methods, properties, and applications. Polym Plast Technol Eng 57:70–97. https://doi.org/10.1080/03602559.2017.1300817

    Article  CAS  Google Scholar 

  17. Youssef Z, Vanderesse R, Colombeau L et al (2017) The application of titanium dioxide, zinc oxide, fullerene, and graphene nanoparticles in photodynamic therapy. Cancer Nanotechnol. https://doi.org/10.1186/s12645-017-0032-2

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nguyen VH, Lamiel C, Kharismadewi D et al (2015) Covalently bonded reduced graphene oxide/polyaniline composite for electrochemical sensors and capacitors. J Electroanal Chem 758:148–155. https://doi.org/10.1016/j.jelechem.2015.10.023

    Article  CAS  Google Scholar 

  19. Sapurina I, Mokeev M, Lavrentev V et al (2000) Polyaniline complex with fullerene C60. Eur Polym J 36:2321–2326. https://doi.org/10.1016/S0014-3057(00)00012-4

    Article  CAS  Google Scholar 

  20. Kang Y, Kim SK, Lee C (2004) Doping of polyaniline by thermal acid-base exchange reaction. Mater Sci Eng C 24:39–41. https://doi.org/10.1016/j.msec.2003.09.047

    Article  CAS  Google Scholar 

  21. Giusca C, Baibarac M, Lefrant S et al (2002) C60-polymer nanocomposites: evidence for interface interaction. Carbon NY 40:1565–1574. https://doi.org/10.1016/S0008-6223(02)00024-6

    Article  CAS  Google Scholar 

  22. Radoičić M, Šaponjić Z, Nedeljković J et al (2010) Self-assembled polyaniline nanotubes and nanoribbons/titanium dioxide nanocomposites. Synth Met 160:1325–1334. https://doi.org/10.1016/j.synthmet.2010.04.010

    Article  CAS  Google Scholar 

  23. Xiong S, Yang F, Ding G et al (2012) Covalent bonding of polyaniline on fullerene: enhanced electrical, ionic conductivities and electrochromic performances. Electrochim Acta 67:194–200. https://doi.org/10.1016/j.electacta.2012.02.026

    Article  CAS  Google Scholar 

  24. Wang Q, Wang S, Li J, Moriyama H (2012) Synthesis and characterization of C 60/polyaniline composites from interfacial polymerization. J Polym Sci B Polym Phys 50:1426–1432. https://doi.org/10.1002/polb.23142

    Article  CAS  Google Scholar 

  25. Saini P, Choudhary V, Singh BP et al (2009) Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys 113:919–926. https://doi.org/10.1016/j.matchemphys.2008.08.065

    Article  CAS  Google Scholar 

  26. Zhao B, Shao G, Fan B et al (2014) Effect of the TiO2 amounts on microwave absorption properties of Ni/TiO2 heterostructure composites. Phys B Condens Matter 454:120–125. https://doi.org/10.1016/j.physb.2014.07.079

    Article  CAS  Google Scholar 

  27. Tavakolinia F, Yousefi M, Afghahi SSS et al (2020) Effect of polyaniline on magnetic and microwave absorption properties in SrFe12O19/Zn0.4Co0.2Ni0.4Fe2O4 ferrite nanocomposites. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-020-01547-0

    Article  Google Scholar 

  28. Manna K, Srivastava SK (2017) Fe3O4@carbon@polyaniline trilaminar core-shell composites as superior microwave absorber in shielding of electromagnetic pollution. ACS Sustain Chem Eng 5:10710–10721. https://doi.org/10.1021/acssuschemeng.7b02682

    Article  CAS  Google Scholar 

  29. Liu J, Duan Y, Song L, Zhang X (2018) Constructing sandwich-like polyaniline/graphene oxide composites with tunable conjugation length toward enhanced microwave absorption. Org Electron 63:175–183. https://doi.org/10.1016/j.orgel.2018.09.017

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the UMRG (RG294-14AFR), PPP Grant (PG145-2014B) and thanks the Department of Chemistry, Faculty of Science, University of Malaya, Malaysia. The authors would also like to acknowledge Mr. Masato Tadokoro from The Yokohama Rubber Co., Ltd., Japan for his assistance in the microwave absorption measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sook-Wai Phang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtar, N., Wong, PY., Teh, GB. et al. Microwave absorption properties of polyaniline (PAni) with various amount of carbonaceous material (CM). Polym. Bull. 78, 6351–6365 (2021). https://doi.org/10.1007/s00289-020-03432-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03432-9

Keywords

Navigation