Skip to main content
Log in

Recent developments in membrane technology for the elimination of ammonia from wastewater: A review

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This review article presents an extensive study on ammonia elimination from wastewater through membrane separation technology. The mechanism, performance and morphology of different types of membranes that have been employed for ammonia removal from wastewater such as hollow fiber membrane contactor, membrane distillation contactor and flat sheet membranes including blend, and mixed matrix membranes were analyzed. The impact of various variables, for example feed solution pH, concentration of ammonia in the feed solution, operation temperature, membrane thickness, the feed velocity and striping phase velocity on ammonia removal performance of membranes, was evaluated. To summarize the experimental studies, the best performance of membranes reported in the articles was compared and the future perspective of ammonia removal by membrane technology was reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A :

Operative filtration area

AGMD:

Air gap membrane distillation

CA:

Cellulose acetate

C A,0 :

Initial concentration of ammonia in the feed phase

C A,f :

Concentration of ammonia in the feed solution

CA,s :

Concentration of ammonia in the stripping phase

DCMD:

Direct contact membrane distillation

DE:

Partition coefficient efficiency

DMAc:

N,N-dimethylacetamide

E :

Removal efficiency

J w :

Flux of permeate solution

K a :

Ammonia mass transfer coefficient

KOE:

Mass transfer coefficient

MA:

Membrane absorption

NMP:

N-Methyl-2-pyrrolidone

PP:

Polypropylene

PSf:

Polysulfone

PTFE:

Polytetrafluoroethylene

PVDF:

Polyvinylidene fluoride

Q :

Volume of collected permeate sample

SEM:

Scanning electron microscopy

SGMD:

Sweeping gas membrane distillation

TAN:

Total ammonia nitrogen

VMD:

Vacuum membrane distillation

ΔT:

Sampling duration

References

  1. Bernier J, Rocher V, Guerin S, Lessard P (2014) Modelling the nitrification in a full-scale tertiary biological aerated filter unit. Bioprocess Biosyst Eng 37:289–300. https://doi.org/10.1007/s00449-013-0996-1

    Article  CAS  PubMed  Google Scholar 

  2. Almutairi A, Weatherley LR (2015) Intensification of ammonia removal from waste water in biologically active zeolitic ion exchange columns. J Environ Manage 160:128–138. https://doi.org/10.1016/j.jenvman.2015.05.033

    Article  CAS  PubMed  Google Scholar 

  3. Adam MR, Othman MHD, Puteh MH et al (2020) Impact of sintering temperature and pH of feed solution on adsorptive removal of ammonia from wastewater using clinoptilolite based hollow fibre ceramic membrane. J Water Process Eng 33:101063

    Article  Google Scholar 

  4. Heisler J, Glibert PM, Burkholder JM et al (2008) Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8:3–13. https://doi.org/10.1016/j.hal.2008.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hussain S, Aziz HA, Isa MH et al (2007) Physico-chemical method for ammonia removal from synthetic wastewater using limestone and GAC in batch and column studies. Bioresour Technol 98:874–880. https://doi.org/10.1016/j.biortech.2006.03.003

    Article  CAS  PubMed  Google Scholar 

  6. Park W, Jang E, Lee MJ et al (2011) Combination of ion exchange system and biological reactors for simultaneous removal of ammonia and organics. J Environ Manage 92:1148–1153. https://doi.org/10.1016/j.jenvman.2010.11.028

    Article  CAS  PubMed  Google Scholar 

  7. Tekerlekopoulou AG, Vayenas DV (2008) Simultaneous biological removal of ammonia, iron and manganese from potable water using a trickling filter. Biochem Eng J 39:215–220. https://doi.org/10.1016/j.bej.2007.09.005

    Article  CAS  Google Scholar 

  8. Kamali M, Suhas DP, Costa ME et al (2019) Sustainability considerations in membrane-based technologies for industrial effluents treatment. Chem Eng J 368:474–494. https://doi.org/10.1016/j.cej.2019.02.075

    Article  CAS  Google Scholar 

  9. Crab R, Kochva M, Verstraete W, Avnimelech Y (2009) Bio-flocs technology application in over-wintering of tilapia. Aquac Eng 40:105–112. https://doi.org/10.1016/j.aquaeng.2008.12.004

    Article  Google Scholar 

  10. Brazil BL (2006) Performance and operation of a rotating biological contactor in a tilapia recirculating aquaculture system. Aquac Eng 34:261–274. https://doi.org/10.1016/j.aquaeng.2005.06.005

    Article  Google Scholar 

  11. Aspé E, Martí MC, Jara A, Roeckel M (2001) Ammonia Inhibition in the Anaerobic Treatment of Fishery Effluents. Water Environ Res 73:154–164. https://doi.org/10.2175/106143001x138813

    Article  PubMed  Google Scholar 

  12. Ridhwan M, Hafiz M, Othman D et al (2019) Current trends and future prospects of ammonia removal in wastewater : a comprehensive review on adsorptive membrane development. Sep Purif Technol 213:114–132. https://doi.org/10.1016/j.seppur.2018.12.030

    Article  CAS  Google Scholar 

  13. Ahmadiannamini P, Eswaranandam S, Wickramasinghe R, Qian X (2017) Mixed-matrix membranes for efficient ammonium removal from wastewaters. J Memb Sci 526:147–155. https://doi.org/10.1016/j.memsci.2016.12.032

    Article  CAS  Google Scholar 

  14. Sakar H, Celik I, Balcik-Canbolat C et al (2019) Ammonium removal and recovery from real digestate wastewater by a modified operational method of membrane capacitive deionization unit. J Clean Prod 215:1415–1423. https://doi.org/10.1016/j.jclepro.2019.01.165

    Article  CAS  Google Scholar 

  15. Aligwe PA, Sirkar KK, Canlas CJ (2019) Hollow fiber gas membrane-based removal and recovery of ammonia from water in three different scales and types of modules. Sep Purif Technol 224:580–590. https://doi.org/10.1016/j.seppur.2019.04.074

    Article  CAS  Google Scholar 

  16. Bódalo A, Gómez JL, Gómez E et al (2005) Ammonium removal from aqueous solutions by reverse osmosis using cellulose acetate membranes. Desalination 184:149–155. https://doi.org/10.1016/j.desal.2005.03.062

    Article  CAS  Google Scholar 

  17. Moradihamedani P, Abdullah AH (2019) Ammonia removal from aquaculture wastewater by high flux and high rejection polysulfone/cellulose acetate blend membrane. Polym Bull 76:2481–2497. https://doi.org/10.1007/s00289-018-2507-7

    Article  CAS  Google Scholar 

  18. Zandi S, Nemati B, Jahanianfard D et al (2019) Industrial biowastes treatment using membrane bioreactors (MBRs) -a scientometric study. J Environ Manage 247:462–473. https://doi.org/10.1016/j.jenvman.2019.06.066

    Article  CAS  PubMed  Google Scholar 

  19. Bejan D, Graham T, Bunce NJ (2013) Chemical methods for the remediation of ammonia in poultry rearing facilities : a review. Biosyst Eng 115:230–243. https://doi.org/10.1016/j.biosystemseng.2013.03.003

    Article  Google Scholar 

  20. Eskicioglu C, Galvagno G, Cimon C (2018) Approaches and processes for ammonia removal from side- streams of municipal effluent treatment plants. Bioresour Technol. https://doi.org/10.1016/j.biortech.2018.07.020

    Article  PubMed  Google Scholar 

  21. Zhu Z, Hao Z, Shen Z, Chen J (2005) Modified modeling of the effect of pH and viscosity on the mass transfer in hydrophobic hollow fiber membrane contactors. J Memb Sci 250:269–276. https://doi.org/10.1016/j.memsci.2004.10.031

    Article  CAS  Google Scholar 

  22. Shen Z, Huang J, Qian G (1997) Recovery of cyanide from wastewater using gas-filled membrane absorption. Water Environ Res 69:363–367. https://doi.org/10.2175/106143097x125560

    Article  CAS  Google Scholar 

  23. Wickramasinghe SR, Semmens MJ, Cussler EL (1992) Mass transfer in various hollow fiber geometries. J Memb Sci 69:235–250. https://doi.org/10.1016/0376-7388(92)80042-I

    Article  CAS  Google Scholar 

  24. Gabelman A, Hwang ST (1999) Hollow fiber membrane contactors. J Memb Sci 159:61–106. https://doi.org/10.1016/S0376-7388(99)00040-X

    Article  CAS  Google Scholar 

  25. Mahmud H, Kumar A, Narbaitz RM, Matsuura T (2000) A study of mass transfer in the membrane air-stripping process using microporous polypropylene hollow fibers. J Memb Sci 179:29–41. https://doi.org/10.1016/S0376-7388(00)00381-1

    Article  CAS  Google Scholar 

  26. Baker RW (2012) Membrane Technology and Applications. Wiley, Chichester

    Book  Google Scholar 

  27. Sengupta A, Peterson PA, Miller BD et al (1998) Large-scale application of membrane contactors for gas transfer from or to ultrapure water. Sep Purif Technol 14:189–200. https://doi.org/10.1016/S1383-5866(98)00074-4

    Article  CAS  Google Scholar 

  28. Tan X, Tan SP, Teo WK, Li K (2006) Polyvinylidene fluoride (PVDF) hollow fibre membranes for ammonia removal from water. J Memb Sci 271:59–68. https://doi.org/10.1016/j.memsci.2005.06.057

    Article  CAS  Google Scholar 

  29. Schneider M, El Alaoui M, Von Stockar U, Marison IW (1997) Batch cultures of a hybridoma cell line performed with in situ ammonia removal. Enzyme Microb Technol 20:268–276. https://doi.org/10.1016/S0141-0229(96)00122-6

    Article  CAS  Google Scholar 

  30. Kong J, Li K (2001) An improved gas permeation method for characterising and predicting the performance of microporous asymmetric hollow fibre membranes used in gas absorption. J Memb Sci 182:271–281. https://doi.org/10.1016/S0376-7388(00)00573-1

    Article  CAS  Google Scholar 

  31. Li K, Kong J, Tan X (2000) Design of hollow fibre membrane modules for soluble gas removal. Chem Eng Sci 55:5579–5588. https://doi.org/10.1016/S0009-2509(00)00193-7

    Article  CAS  Google Scholar 

  32. Kong J, Li K (2001) An improved gas permeation method for characterising and predicting the performance. J Membr Sci 182:271–281

    Article  CAS  Google Scholar 

  33. Ma X, Li Y, Cao H et al (2019) High-selectivity membrane absorption process for recovery of ammonia with electrospun hollow fiber membrane. Sep Purif Technol 216:136–146. https://doi.org/10.1016/j.seppur.2019.01.025

    Article  CAS  Google Scholar 

  34. Akamatsu K, Ishizaki K, Yoshinaga S, Nakao SI (2018) Mass transfer coefficient of tubular ultrafiltration membranes under high-flux conditions. AIChE J 64:1778–1782. https://doi.org/10.1002/aic.16052

    Article  CAS  Google Scholar 

  35. Qu D, Sun D, Wang H, Yun Y (2013) Experimental study of ammonia removal from water by modified direct contact membrane distillation. Desalination 326:135–140. https://doi.org/10.1016/j.desal.2013.07.021

    Article  CAS  Google Scholar 

  36. Himma NF, Anisah S, Prasetya N, Wenten IG (2016) Advances in preparation, modification, and application of polypropylene membrane. J Polym Eng 36:329–362. https://doi.org/10.1515/polyeng-2015-0112

    Article  Google Scholar 

  37. Ashrafizadeh SN, Khorasani Z (2010) Ammonia removal from aqueous solutions using hollow-fiber membrane contactors. Chem Eng J 162:242–249. https://doi.org/10.1016/j.cej.2010.05.036

    Article  CAS  Google Scholar 

  38. Hasanoĝlu A, Romero J, Pérez B, Plaza A (2010) Ammonia removal from wastewater streams through membrane contactors: Experimental and theoretical analysis of operation parameters and configuration. Chem Eng J 160:530–537. https://doi.org/10.1016/j.cej.2010.03.064

    Article  CAS  Google Scholar 

  39. El-Bourawi MS, Ding Z, Ma R, Khayet M (2006) A framework for better understanding membrane distillation separation process. J Memb Sci 285:4–29. https://doi.org/10.1016/j.memsci.2006.08.002

    Article  CAS  Google Scholar 

  40. EL-Bourawi MS, Khayet M, Ma R et al (2007) Application of vacuum membrane distillation for ammonia removal. J Memb Sci 301:200–209. https://doi.org/10.1016/j.memsci.2007.06.021

    Article  CAS  Google Scholar 

  41. Wang P, Chung T (2015) Recent advances in membrane distillation processes : membrane development, con fi guration design and application exploring. J Memb Sci 474:39–56. https://doi.org/10.1016/j.memsci.2014.09.016

    Article  CAS  Google Scholar 

  42. Camacho LM, Dumée L, Zhang J et al (2013) Advances in membrane distillation for water desalination and purification applications. Water (Switzerland) 5:94–196. https://doi.org/10.3390/w5010094

    Article  Google Scholar 

  43. Khayet M (2011) Membranes and theoretical modeling of membrane distillation : a review. Adv Colloid Interface Sci 164:56–88. https://doi.org/10.1016/j.cis.2010.09.005

    Article  CAS  PubMed  Google Scholar 

  44. Zhang J, Li J, Gray S (2011) Effect of applied pressure on performance of PTFE membrane in DCMD. J Memb Sci 369:514–525. https://doi.org/10.1016/j.memsci.2010.12.033

    Article  CAS  Google Scholar 

  45. Liu F, Hashim NA, Liu Y et al (2011) Progress in the production and modification of PVDF membranes. J Memb Sci 375:1–27. https://doi.org/10.1016/j.memsci.2011.03.014

    Article  CAS  Google Scholar 

  46. Duong T, Xie Z, Ng D, Hoang M (2013) Ammonia removal from aqueous solution by membrane distillation. Water Environ J 27:425–434. https://doi.org/10.1111/j.1747-6593.2012.00364.x

    Article  CAS  Google Scholar 

  47. Khayet M, Matsuura T (2004) Pervaporation and Vacuum Membrane Distillation Processes : Modeling and Experiments. AIChE J 50:1697–1712

    Article  CAS  Google Scholar 

  48. Wu C, Yan H, Li Z, Lu X (2016) Ammonia recovery from high concentration wastewater of soda ash industry with membrane distillation process. Desalin Water Treat 57:6792–6800. https://doi.org/10.1080/19443994.2015.1010233

    Article  CAS  Google Scholar 

  49. Xie Z, Duong T, Hoang M et al (2009) Ammonia removal by sweep gas membrane distillation. Water Res 43:1693–1699. https://doi.org/10.1016/j.watres.2008.12.052

    Article  CAS  PubMed  Google Scholar 

  50. Khayet M, Godino MP, Mengual JI (2003) Possibility of nuclear desalination through various membrane distillation configurations: a comparative study. Int J Nucl Desalin 1:30–46. https://doi.org/10.1504/IJND.2003.003441

    Article  CAS  Google Scholar 

  51. Rivier CA, García-Payo MC, Marison IW, Von Stockar U (2002) Separation of binary mixtures by thermostatic sweeping gas membrane distillation - I. Theory simul J Memb Sci 201:1–16. https://doi.org/10.1016/S0376-7388(01)00648-2

    Article  CAS  Google Scholar 

  52. Khayet M, Godino P, Mengual JI (2000) Theory and experiments on sweeping gas membrane distillation. J Memb Sci 165:261–272. https://doi.org/10.1016/S0376-7388(99)00236-7

    Article  CAS  Google Scholar 

  53. Qianliang L, Jun M, Zhenghui W, et al (2011) The effect of ammonia initial concentration in membrane distillation process for high ammonia concentration wastewater treatment. 2011 Int Conf Consum Electron Commun Networks, CECNet 2011 - Proc 1795–1797. https://doi.org/https://doi.org/10.1109/CECNET.2011.5769135

  54. Mook WT, Chakrabarti MH, Aroua MK et al (2012) Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review. Desalination 285:1–13. https://doi.org/10.1016/j.desal.2011.09.029

    Article  CAS  Google Scholar 

  55. Moradihamedani P, Abdullah AH (2018) Ammonia removal from aquaculture wastewater by high flux and high rejection polysulfone/cellulose acetate blend membrane. Polym Bull. https://doi.org/10.1007/s00289-018-2507-7

    Article  Google Scholar 

  56. Moradihamedani P, Kalantari K, Abdullah AH, Morad NA (2016) High efficient removal of lead(II) and nickel(II) from aqueous solution by novel polysulfone/Fe3O4–talc nanocomposite mixed matrix membrane. Desalin Water Treat 57:28900–28909. https://doi.org/10.1080/19443994.2016.1193449

    Article  CAS  Google Scholar 

  57. Jeong H, Park J, Kim H (2013) Determination of NH+ in environmental water with interfering substances using the modified nessler method. J Chem 2013:1–9. https://doi.org/10.1155/2013/359217

    Article  CAS  Google Scholar 

  58. Rezakazemi M, Shirazian S, Ashrafizadeh SN (2012) Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor. Desalination 285:383–392. https://doi.org/10.1016/j.desal.2011.10.030

    Article  CAS  Google Scholar 

  59. Jorgensen TC, Weatherley LR (2003) Ammonia removal from wastewater by ion exchange in the presence of organic contaminants. Water Res 37:1723–1728. https://doi.org/10.1016/S0043-1354(02)00571-7

    Article  CAS  PubMed  Google Scholar 

  60. Paul Chen J, Chua ML, Zhang B (2002) Effects of competitive ions, humic acid, and pH on removal of ammonium and phosphorous from the synthetic industrial effluent by ion exchange resins. Waste Manag 22:711–719. https://doi.org/10.1016/S0956-053X(02)00051-X

    Article  PubMed  Google Scholar 

  61. Wang YF, Lin F, Pang WQ (2007) Ammonium exchange in aqueous solution using Chinese natural clinoptilolite and modified zeolite. J Hazard Mater 142:160–164. https://doi.org/10.1016/j.jhazmat.2006.07.074

    Article  CAS  PubMed  Google Scholar 

  62. Zheng H, Han L, Ma H et al (2008) Adsorption characteristics of ammonium ion by zeolite 13X. J Hazard Mater 158:577–584. https://doi.org/10.1016/j.jhazmat.2008.01.115

    Article  CAS  PubMed  Google Scholar 

  63. Huang H, Xiao X, Yan B, Yang L (2010) Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent. J Hazard Mater 175:247–252. https://doi.org/10.1016/j.jhazmat.2009.09.156

    Article  CAS  PubMed  Google Scholar 

  64. Lei L, Li X, Zhang X (2008) Ammonium removal from aqueous solutions using microwave-treated natural Chinese zeolite. Sep Purif Technol 58:359–366. https://doi.org/10.1016/j.seppur.2007.05.008

    Article  CAS  Google Scholar 

  65. Abdelrasoul A, Doan H, Lohi A, Cheng C-H (2015) Morphology Control of Polysulfone Membranes in Filtration Processes: a Critical Review. ChemBioEng Rev 2:22–43. https://doi.org/10.1002/cben.201400030

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Moradihamedani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradihamedani, P. Recent developments in membrane technology for the elimination of ammonia from wastewater: A review. Polym. Bull. 78, 5399–5425 (2021). https://doi.org/10.1007/s00289-020-03386-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03386-y

Keywords

Navigation