Skip to main content
Log in

Alkalinity triggered the degradation of polydopamine nanoparticles

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polydopamine (PDA) has been found to be as functional materials in a wide range of applications. However, the degradation behavior and mechanism of PDA are still in debate. For well understanding the degradation, PDA nanoparticles (PDA NPs) were prepared by oxidation and self-polymerization of dopamine and employed to study the degradation properties. We systematically studied the degradation of PDA NPs by adjusting the pH value, temperature and alkali strength of the system. PDA NPs were more prone to degrade under alkaline conditions above pH 11.0, and the stronger the alkalinity (pH 13.0) induced the faster the degradation rate. The analysis results for the entire degradation process showed that the size of the PDA NPs firstly decreased and then the morphology of PDA NPs changed from spheres to nanosheets with degradation time. After 120 h of degradation, PDA was completely degraded into monomers and oligomers with three or four repeat units that can be soluble in water. Moreover, PDA showed good biocompatibility. This study would give a strong evidence to confirm the degradation of PDA and help for designing the new PDA materials in biomedical and environmental fields.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lee H, Dellatore S, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426

    Article  CAS  Google Scholar 

  2. Liu Y, Ai K, Lu L (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114:5057

    Article  CAS  Google Scholar 

  3. Liebscher J, Mrówczyński R, Scheidt HA, Filip C, Hădade ND, Turcu R, Bende A, Beck S (2013) Structure of polydopamine: a never-ending story? Langmuir 29:10539–10548

    Article  CAS  Google Scholar 

  4. Hong S, Na Y, Choi S, Song IT, Kim WY, Lee H (2012) Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv Funct Mater 22:4711

    Article  CAS  Google Scholar 

  5. Ye Q, Zhou F, Liu W (2011) Bioinspired catecholic chemistry for surface modification. Chem Soc Rev 40:4244–4258

    Article  CAS  Google Scholar 

  6. Brubaker CE, Messersmith PB (2012) The present and future of biologically inspired adhesive interfaces and materials. Langmuir 28:2200–2205

    Article  CAS  Google Scholar 

  7. Dreyer DR, Miller DJ, Freeman BD, Paul DR, Bielawski CW (2013) Perspectives on poly(dopamine). Chem Sci 4:3796

    Article  CAS  Google Scholar 

  8. Kwon IS, Bettinger CJ, Kwon I, Bettinger CJ (2018) Polydopamine nanostructures as biomaterials for medical applications. J Mater Chem B 6:6895

    Article  CAS  Google Scholar 

  9. Liu SW, Wang L, Lin M, Liu Y, Zhang LN, Zhang H (2019) Tumor photothermal therapy employing photothermal inorganic nanoparticles/polymers nanocomposites. Chin J Polym Sci 37:115–128

    Article  CAS  Google Scholar 

  10. Ghorbani F, Zamanian A, Behnamghader A, Joupari MD (2019) A facile method to synthesize mussel-inspired polydopamine nanospheres as an active template for in situ formation of biomimetic hydroxyapatite. Mater Sci Eng, C 94:729

    Article  CAS  Google Scholar 

  11. Xie C, Li P, Han L, Wang Z, Zhou T, Deng W, Wang K, Lu X (2017) Polydopamine/polypyrrole composite microcapsules with a dual-function of on-demand drug delivery and cell stimulation for electrical therapy. NPG Asia Mater 9:e358

    Article  CAS  Google Scholar 

  12. Li H, Aulin YV, Frazer L, Borguet E, Kakodkar R, Feser J, Chen Y, An K, Dikin DA, Ren F (2017) Structure evolution and thermoelectric properties of carbonized polydopamine thin films. ACS Appl Mater Interfaces 9:6655

    Article  CAS  Google Scholar 

  13. Ryu JH, Messersmith PB, Lee H (2018) Polydopamine surface chemistry: a decade of discovery. ACS Appl Mater Interfaces 10:7523

    Article  CAS  Google Scholar 

  14. Ma F, Zhang N, Wei X, Yang JH, Wang Y, Zhou ZW (2017) Blend-electrospun poly(vinylidene fluoride)/polydopamine membranes: self-polymerization of dopamine and the excellent adsorption/separation abilities. J Mater Chem A 5:14430

    Article  CAS  Google Scholar 

  15. Zhang PB, Tang AQ, Wang ZH, Lu JY, Zhu BK, Zhu LP (2018) Tough poly(L-DOPA)-containing double network hydrogel beads with high capacity of dye adsorption. Chin J Polym Sci 36:1251–1261

    Article  CAS  Google Scholar 

  16. Zhu J, Tsehaye MT, Wang J, Uliana A, Tian M, Yuan S, Li J, Zhang Y, Volodin A, Van der Bruggen B (2018) A rapid deposition of polydopamine coatings induced by iron (III) chloride/hydrogen peroxide for loose nanofiltration. J Colloid Interface Sci 523:86

    Article  CAS  Google Scholar 

  17. Lynge ME, Van der Westen R, Postma A, Städler B (2011) Polydopamine—a nature-inspired polymer coating for biomedical science. Nanoscale 3:4916

    Article  CAS  Google Scholar 

  18. Cheng W, Zeng XW, Chen HZ, Li ZM, Zeng WF, Mei L, Zhao YL (2019) Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine. ACS Nano 13:8537–8565

    Article  CAS  Google Scholar 

  19. Zeng JF, Shi DJ, Gu YL, Kaneko T, Zhang L, Zhang HJ, Kaneko D, Chen MQ (2019) Injectable and NIR-responsive hydrogels encapsulating dopamine-stabilized gold nanorods with long photothermal activity controlled for tumor therapy. Biomacromol 20:3375–3384

    Article  CAS  Google Scholar 

  20. Lin JH, Yu CJ, Yang YC, Tseng WL (2015) Formation of fluorescent polydopamine dots from hydroxyl radical-induced degradation of polydopamine nanoparticles. Phys Chem Chem Phys 17:15124–15130

    Article  CAS  Google Scholar 

  21. Frari D, Bour J, Ball V, Toniazzo V, Ruch D (2012) Degradation of polydopamine coatings by sodium hypochlorite: a process depending on the substrate and the film synthesis method. Polym Degrad Stab 97:1844–1849

    Article  Google Scholar 

  22. Wakamatsu K, Nakanishi Y, Miyazaki N, Kolbe L, Ito S (2012) UVA-induced oxidative degradation of melanins: fission of indole moiety in eumelanin and conversion to benzothiazole moiety in pheomelanin. Pigment Cell Melanoma Res 25:434–445

    Article  CAS  Google Scholar 

  23. Li WY, Wang Z, Xiao M, Miyoshi T, Yang XZ, Hu ZY, Liu C, Chuang S, Shawkey MD, Gianneschi NC, Dhinojwala A (2019) Mechanism of UVA degradation of synthetic eumelanin. Biomacromol 20:4593–4601

    Article  CAS  Google Scholar 

  24. Manini P, Margari P, Pomelli C, Franchi P, Gentile G, Napolitano A, Valgimigli L, Chiappe C, Ball V, d’Ischia M (2016) Nanoscale disassembly and free radical reorganization of polydopamine in ionic liquids. J Phys Chem B 120:11942–11950

    Article  CAS  Google Scholar 

  25. Hao YN, Zheng AQ, Guo TT, Shu Y, Wang JH, Johnson O, Chen W (2019) Glutathione triggered degradation of polydopamine to facilitate controlled drug release for synergic combinational cancer treatment. J Mater Chem B 7:6742–6750

    Article  CAS  Google Scholar 

  26. Shen JL, Shi DJ, Dong LL, Zhang ZY, Li XJ, Chen MQ (2018) Fabrication of polydopamine nanoparticles knotted alginate scaffolds and their properties. J Biomed Mater Res A 106A:3255–3266

    Article  Google Scholar 

  27. Dreyer DR, Miller DJ, Freeman BD, Paul DR, Bielawski CW (2012) Elucidating the structure of poly(dopamine). Langmuir 28:6428

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of Jiangsu Province (Grants No BK20181349), the Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University (JDSJ2018-09) and MOE & SAFEA for the 111 Project (B13025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongjian Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1446 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Yang, W., Zhang, J. et al. Alkalinity triggered the degradation of polydopamine nanoparticles. Polym. Bull. 78, 4439–4452 (2021). https://doi.org/10.1007/s00289-020-03312-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03312-2

Keywords

Navigation