Skip to main content
Log in

Development of high-performance hybrid sustainable bio-composites from biobased carbon reinforcement and cardanol-benzoxazine matrix

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Biobased benzoxazine composites were designed and prepared using renewable bio-phenol (cardanol), newly synthesized 9, 10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO)-urea diamine and eco-friendly borassus aethiopum flower carbon (ABAFC) reinforcement through appropriate experimental conditions. The molecular structure of the DOPO-urea diamine and DOPO-urea diamine-based cardanol-benzoxazine monomers was confirmed using spectral analysis. The biobased benzoxazine matrix and varying weight percentages (1, 3 and 5wt.%) of the bio-carbon-reinforced composites were characterized by different analytical techniques. Result obtained from different studies showed that the glass transition temperature, percentage char yield and contact angle values were increased with the increase in weight percentage of bio-carbon reinforcement. Further, it was also ascertained that the results obtained from corrosion studies using hybrid bio-carbon-reinforced cardanol-benzoxazine composites as the coating materials for steel specimen act as efficient protecting materials. Thus, the overall results suggested that the DOPO urea diamine-based cardanol-benzoxazine composites reinforced with bio-carbon can be used for high-performance corrosion-resistant coating applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Xu G, Shi T, Wang Q, Liu J, Yi Y (2015) A facile way to prepare two novel DOPO‐containing liquid benzoxazines and their graphene oxide composites. J Appl Polym Sci 132:41634

    Google Scholar 

  2. Su H, Liu Z (2013) The structure and thermal properties of novel DOPO-containing 1,3-benzoxazines. J Therm Anal Calorim 114:1207–1215

    CAS  Google Scholar 

  3. Sudo A, Hirayama S, Endo T (2010) Highly efficient catalysts‐acetylacetonato complexes of transition metals in the 4th period for ring‐opening polymerization of 1,3‐benzoxazine. Journal of Polymer Science: Part A. Polym Chem 48:479–484

    CAS  Google Scholar 

  4. Sponton M, Lligadas G, Ronda JC, Galia M, Cadiz V (2009) Development of a DOPO-containing benzoxazine and its high-performance flame retardant copolybenzoxazines. Polym Degrad Stab 94:1693–1699

    CAS  Google Scholar 

  5. Shukla S, Mahata A, Pathak B, Lochab B (2015) Cardanol benzoxazines – interplay of oxazine functionality (mono to tetra) and properties RSC Adv 5:78071–78080

    CAS  Google Scholar 

  6. John G, Masuda M, Okada Y, Yase K, Shimizu T (2001) Nanotube Formation from Renewable Resources via Coiled Nanofibers. Adv Mater 13:715–718

    CAS  Google Scholar 

  7. Darromana E, Bonnota L, Auvergnea R, Boutevina B, Caillola S (2014) New aromatic amine based on cardanol giving new biobased epoxy networks with cardanol. Eur J Lipid Sci Technol 117:178

    Google Scholar 

  8. Qian X, Song L, Jiang S, Tang G, Xing W, Wang B, Hu Y, Yuen RKK (2013) Novel Flame Retardants Containing 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and Unsaturated Bonds: Synthesis, Characterization, and Application in the Flame Retardancy of Epoxy Acrylates. Ind Eng Chem Res 52:7307–7315

    CAS  Google Scholar 

  9. Perret B, Schartel B, Stob K, Ciesielski M, Diederichs J, Doring M, Kramer J, Altstadt V (2011) A New Halogen‐Free Flame Retardant Based on 9,10‐Dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide for Epoxy Resins and their Carbon Fiber Composites for the Automotive and Aviation Industries. Macromol Mater Eng 296:14–30

    CAS  Google Scholar 

  10. Lin CH, Cai SX, Lin CH (2005) J Polym Sci Part A Polym Chem 43:5971–5986

    CAS  Google Scholar 

  11. Schartel B, Balabanovich AI, Braun U, Knoll U, Artner J, Ciesielski M, Doring M, Perez R, Sandler JKW, Altstadt V, Hoffmann T, Pospiech D (2007) Pyrolysis of epoxy resins and fire behavior of epoxy resin composites flame‐retarded with 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide additives. J Appl Polym Sci 104:2260–2269

    CAS  Google Scholar 

  12. Brownt EN, Kesslerg MR, Sottost NR, White SR (2003) In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene. J Microencapsul 20:719–730

    Google Scholar 

  13. McCooey SH, Connon SJ (2005) Urea‐ and Thiourea‐Substituted Cinchona Alkaloid Derivatives as Highly Efficient Bifunctional Organocatalysts for the Asymmetric Addition of Malonate to Nitroalkenes: Inversion of Configuration at C9 Dramatically Improves Catalyst Performance. Angew Chem Int Ed 44:6367–6370

    CAS  Google Scholar 

  14. Clapp JG, Parham TM (1991) Properties and uses of liquid urea-triazone-based nitrogen fertilizers. Fertil Res 28:229–232

    CAS  Google Scholar 

  15. Kellersztein I, Dotan A (2015) Polym Compos 37:2133–2141

    Google Scholar 

  16. Suaiama G, Makul N (2013) Use of increasing amounts of bagasse ash waste to produce self-compacting concrete by adding limestone powder waste. J Clean Prod 57:308–319

    Google Scholar 

  17. Ribeiro da Silva V, Mosiewicki MA, Yoshida MI, Coelho da Silva M, Stefani PM, Marcovich NE (2013) Polyurethane foams based on modified tung oil and reinforced with rice husk ash I: Synthesis and physical chemical characterization. Polym Test 32:438

    CAS  Google Scholar 

  18. Reddy N, Yang Y (2010) J Appl Polym Sci 116:3668–3675

    CAS  Google Scholar 

  19. Hrabe P, Muller M (2016) Procedia Eng 136:169–174

    CAS  Google Scholar 

  20. Chen EYT, Wang YC, Mintz A, Richards A, Chen CS, Lu D, Nguyen T, Chin WC (2012) Activated charcoal composite biomaterial promotes human embryonic stem cell differentiation toward neuronal lineage. J Biomed Mater Res Part A 100A:2006–2017

    CAS  Google Scholar 

  21. Suarez JCM, Coutinho FMB, Sydenstricker TH (2003) SEM studies of tensile fracture surfaces of polypropylene-sawdust composites. Polym Test 22:819–824

    Google Scholar 

  22. Tang Z, Peng S, Hu S, Hong S (2017) Enhanced removal of bisphenol-AF by activated carbon-alginate beads with cetyltrimethyl ammonium bromide. J Colloid Interface Sci 495:191–199

    CAS  PubMed  Google Scholar 

  23. Kumar S, Manal MA, Chakrabarty D (2013) Studies on synthesis and characterization of poly(methyl methacrylate)‐bentonite clay composite by emulsion polymerization and simultaneous in situ clay incorporation. Polym Compos 34:32–40

    Google Scholar 

  24. Nethaji S, Sivasamya A, Thennarasua G, Saravanan S (2010) Adsorption of Malachite Green dye onto activated carbon derived from Borassus aethiopum flower biomass. J Hazard Mater 181:271–280

    CAS  PubMed  Google Scholar 

  25. Volesky B, Holan ZR (1995) Biosorption of Heavy Metals. Biotechnol Prog 11:235–250

    CAS  PubMed  Google Scholar 

  26. Svagan AJ, Samir ASA, Berglund LA (2008) Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv Mater 20:1263–1269

    CAS  Google Scholar 

  27. Elangovan R, Philip L, Chandraraj K (2008) Biosorption of hexavalent and trivalent chromium by palm flower (Borassus aethiopum). Chem Eng J 141:99–111

    CAS  Google Scholar 

  28. Goscianska J, Fathy NA, Aboelenin RMM (2017) Adsorption of solophenyl red 3BL polyazo dye onto amine-functionalized mesoporous carbons. J Colloid Interface Sci 505:593–604

    CAS  PubMed  Google Scholar 

  29. Svorcik V, Makajov Z, Kasalkov NS, Kolska Z, Zakova P, Karpiskov J, Stibor I, Slepicka P (2014) Cytocompatibility of polymers grafted by activated carbon nano-particles. Carbon 69:361–371

    CAS  Google Scholar 

  30. Meenakshi KS, Sudhan EPJ, Kumar SA, Umapathy MJ (2011) Development and characterization of novel DOPO based phosphorus tetraglycidyl epoxy nanocomposites for aerospace applications. Prog Organ Coat 72:402–409

    Google Scholar 

  31. Selvaraj V, Jayanthi KP, Lakshmikandhan T, Alagar M (2015) Development of a polybenzoxazine/TSBA-15 composite from the renewable resource cardanol for low-k applications. RSC Adv 5:48898–48907

    CAS  Google Scholar 

  32. Deng J, Shao Y, Gao N, Deng Y, Tan C, Zhou S, Hu X (2012) Multiwalled carbon nanotubes as adsorbents for removal of herbicide diuron from aqueous solution. Chem Eng J 193:339–347

    Google Scholar 

  33. Prasanna D, Selvaraj V (2016) Pt and Pt-Sn nanoparticles decorated conductive polymer-biowaste ash composite for direct methanol fuel cell. Korean J Chem Eng 33:1489–1499

    CAS  Google Scholar 

  34. Yeganeh H, Razavi-Nouri M, Ghaffari M (2008) Synthesis and properties of polybenzoxazine modified polyurethanes as a new type of electrical insulators with improved thermal stability. Polym Eng Sci 48:1329–1338

    CAS  Google Scholar 

  35. Silva WM, Ribeiro H, Seara LM, Calado HDR, Ferlauto AS, Paniago RM, Leite CF, Silva GG (2012) Surface Properties of Oxidized and Aminated Multi-Walled Carbon Nanotubes. J Braz Chem Soc 23:1078–1086

    CAS  Google Scholar 

  36. Liu YL (2012) Epoxy resins from novel monomers with a bis‐(9,10‐dihydro‐9‐oxa‐10‐oxide‐10‐phosphaphenanthrene‐10‐yl‐) substituent. J Polym Sci Part A Polym Chem 40:359–368

    CAS  Google Scholar 

  37. Chen W, Liu Y, Xu C, Liu Y, Wang Q (2017) Synthesis and properties of an intrinsicflameretardant silicone rubber containing phosphaphenanthrene structure. RSC Adv 7:39786–39795

    CAS  Google Scholar 

  38. Grdadolnika J, Marechal Y (2002) Urea and urea–water solutions—an infrared study. J Mol Struct 615:177–189

    Google Scholar 

  39. Abarro GJ, Podschun J, Diaz LJ, Ohashi S, Saake B, Lehnen R, Ishida H (2016) Benzoxazines with enhanced thermal stability from phenolated organosolv lignin. RSC Adv 6:107689–107698

    CAS  Google Scholar 

  40. Cui Y, Chen Y, Wang X, Tian G, Tang X (2003) Synthesis and characterization of polyurethane/polybenzoxazine‐based interpenetrating polymer networks (IPNs). Polym Int 52:1246–1248

    CAS  Google Scholar 

  41. Xu S, He J, Jin S, Tan B (2018) Heteroatom-rich porous organic polymers constructed by benzoxazine linkage with high carbon dioxide adsorption affinity. J Colloid Interface Sci 509:457–462

    CAS  PubMed  Google Scholar 

  42. Bykov Y, Wagner S, Walter O, Doring M, Fischer O, Pospiech D, Koppl T, Altstadt V (2011) Synthesis of new dibenzo[c .e ][1,2]oxaphosphorine 2‐oxide containing diols based on diethanolamine. Heteroat Chem 23:146–153

    Google Scholar 

  43. Chen H, Lin CH, Hon J-M, Wang MW, Juang TY (2018) First halogen and phosphorus-free, flame-retardant benzoxazine thermosets derived from main-chain type bishydroxydeoxybenzoin-based benzoxazine polymers. Polymer 154:35–41

    CAS  Google Scholar 

  44. Gao T-T, Li Z-W, Lai-Gui Yu, Zhang Z-J (2015) Preparation of zinc hydroxystannate nanocomposites coated by organophosphorus and investigation of their effect on mechanical properties and flame retardancy of poly(vinyl chloride). RSC Adv 5:99291–99298

    CAS  Google Scholar 

  45. Selvaraj V, Jayanthi KP, Arunkumar K, Geethakrishnan T, Alagar M (2020) Synthesis and characterization of GO doped bio-resource based composites for NLO and multifaceted applications. J Polym Res 27:71.https://doi.org/10.1007/s10965-020-2037-5

    Article  CAS  Google Scholar 

  46. Yu L, Chen L, Dong LP, Li LJ, Wang YZ (2014) Organic–inorganic hybrid flame retardant: preparation, characterization and application in EVA. RSC Adv 4:17812–17821

    CAS  Google Scholar 

  47. Izydorczyk W, Waczynski K, Izydorczyk J, Pawełkarasinski, Mazurkiewicz J, Magnuski M, Uljanow J, Niemiec NW, Filipowski W, Electrical and optical properties of spin-coated SnO2 nanofilms. Mater Sci Poland, 32 (2014) 729–736.

  48. Huo S, Wang J, Yang S, Zhang B, Tang Y (2016) A phosphorus‐containing phenolic derivative and its application in benzoxazine resins: curing behavior, thermal, and flammability properties. J Appl Polym Sci 133:43403

    Google Scholar 

  49. Wazarkar K, Sabnis A (2018) Effect of pendant functional groups on curing kinetics and final properties of cardanol-based benzoxazines. J Coat Technol Res 15:555–569

    CAS  Google Scholar 

  50. Zeng M, Chen J, Xu Q, Huang Y, Feng Z, Gu Y (2018) A facile method for the preparation of aliphatic main-chain benzoxazine copolymers with high-frequency low dielectric constants. Polymer Chemistry 9:2913–2925

    CAS  Google Scholar 

  51. Spontón M, Lligadas G, Ronda JC, Galià M, Cádiz V (2009) Development of a DOPO-containing benzoxazine and its high-performance flame retardant copolybenzoxazines. Polym Degrad Stab 94:1693–1699

    Google Scholar 

  52. Yu T, Tuerhongjiang T, Sheng C, Li Y (2017) Phosphorus-containing diacid and its application in jute/poly(lactic acid) composites: Mechanical, thermal and flammability properties. Compos A Appl Sci Manuf 97:60–66

    CAS  Google Scholar 

  53. Mohamed MG, Hsiao C, Hsu K, Lu FH, Shih H, Kuo S (2015) Supramolecular functionalized polybenzoxazines from azobenzene carboxylic acid/azobenzene pyridine complexes: synthesis, surface properties, and specific interactions. RSC Adv 5:12763

    CAS  Google Scholar 

  54. Sharma P, Kumar D, Roy PK (2018) Enhancing the processibility of high temperature polymerizing cardanol derived benzoxazines using eco-friendly curing accelerators. Polymer 138:343

    CAS  Google Scholar 

  55. Kwon K, Park JO, Yoo DY, Yi JS (2009) Phosphoric acid distribution in the membrane electrode assembly of high temperature proton exchange membrane fuel cells. Electrochimica Acta 54:6570–6575

    CAS  Google Scholar 

  56. Lin SC, Wu C, Yeh J, Liu Y (2014) Reaction mechanism and synergistic anticorrosion property of reactive blends of maleimide-containing benzoxazine and amine-capped aniline trimer . Polym Chem 5:4235–4244

    CAS  Google Scholar 

  57. Patil DM, Phalak GA, Mhaske ST (2017) Enhancement of anti-corrosive performances of cardanol based amine functional benzoxazine resin by copolymerizing with epoxy resins. Prog Org Coat 105:18–28

    CAS  Google Scholar 

  58. W.S. Tait (1994) An introduction to electrochemical corrosion testing for practicing engineers and scientists. p. 57, Pair O Docs Publications, Racine

  59. Chang C-H, Huang T-C, Peng C-W, Yeh T-C, Hsin-I Lu, Hung W-I, Weng C-J, Yang T-I, Yeh J-M (2012) Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon 50:5044–5051

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Selvaraj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvaraj, V., Raghavarshini, T. Development of high-performance hybrid sustainable bio-composites from biobased carbon reinforcement and cardanol-benzoxazine matrix. Polym. Bull. 78, 4129–4148 (2021). https://doi.org/10.1007/s00289-020-03232-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03232-1

Keywords

Navigation