Skip to main content
Log in

A novel microwave-assisted synthesis, characterization and evaluation of luliconazole-loaded solid lipid nanoparticles

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The aim of the present investigation is to use microwave-assisted technique to produce luliconazole-loaded solid lipid nanoparticles using stearic acid and Pluronic F-68. The effect of microwave power and concentration of Pluronic F-68 on particle size and zeta potential was studied employing response surface methodology. The response surface models indicated that microwave power has greater influence on particle size and zeta potential than the effect of Pluronic F-68 concentration. However, microwave power and Pluronic F-68 concentration have no significant influence on the entrapment of luliconazole in solid lipid nanoparticles. The solid lipid nanoparticles produced were characterized for particle size and zeta potential by dynamic light scattering, entrapment efficiency and transmission electron microscopy. The particle size and zeta potential of optimized batch were estimated to be 91.39 nm and −20.1 mV, respectively. The solid lipid nanoparticles exhibited high entrapment efficiency (96.68%) for luliconazole. The solid lipid nanoparticles showed 100% release of luliconazole with in 24 h at pH 7.4 following Higuchi’s square root kinetics with diffusion through the matrix being primary release mechanism. The transmission electron microscopy unveiled the spherical shape of solid lipid nanoparticles. The solid lipid nanoparticles were also evaluated for antifungal activity against Candida albicans (MTCC 227) and Aspergillus niger (MTCC 8189). The solid lipid nanoparticles exhibited excellent antifungal action with minimum inhibitory concentration of 6.25 µg/mL against Candida albicans (MTCC 227) and 12.5 µg/mL against Aspergillus niger (MTCC 8189).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mehra NK, Jain K, Jain NK (2015) Pharmaceutical and biomedical applications of surface engineered carbon nanotubes. Drug Discov Today 20(6):750–759. https://doi.org/10.1016/j.drudis.2015.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moritz M, Geszke-Moritz M (2015) Recent developments in the application of polymeric nanoparticles as drug carriers. Adv Clin Exp Med 24(5):749–758. https://doi.org/10.17219/acem/31802

    Article  PubMed  Google Scholar 

  3. Garg T, Goyal AK (2014) Liposomes: targeted and controlled delivery system. Drug Deliv Lett 4(1):62–71

    Article  CAS  Google Scholar 

  4. Labieniec-Watala M, Watala C (2015) PAMAM dendrimers: destined for success or doomed to fail? Plain and modified PAMAM dendrimers in the context of biomedical applications. J Pharm Sci 104(1):2–14. https://doi.org/10.1002/jps.24222

    Article  CAS  PubMed  Google Scholar 

  5. Geszke-Moritz M, Moritz M (2013) Quantum dots as versatile probes in medical sciences: synthesis, modification and properties. Mater Sci Eng C Mater Biol Appl 33(3):1008–1021. https://doi.org/10.1016/j.msec.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  6. Nanda SS, Papaefthymiou GC, Yi DK (2015) Functionalization of graphene oxide and its biomedical applications. Crit Rev Solid State Mater Sci 40(5):291–315. https://doi.org/10.1080/10408436.2014.1002604

    Article  CAS  Google Scholar 

  7. Ahmad N, Ahmad R, Al-Qudaihi A, Alaseel SE, Fita IZ, Khalid MS, Pottoo FH (2019) Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation. RSC Adv. 9(35):20192–20206. https://doi.org/10.1039/c9ra03102b

    Article  CAS  Google Scholar 

  8. Ahmad N, Ahmad FJ, Bedi S, Sharma S, Umar S (2019) A novel Nanoformulation Development of Eugenol and their treatment in inflammation and periodontitis. Saudi Pharm J. 27(2019):778–790. https://doi.org/10.1016/j.jsps.2019.04.014

    Article  PubMed  PubMed Central  Google Scholar 

  9. Geszke-Moritz M, Moritz M (2016) Solid lipid nanoparticles as attractive drug vehicles: composition, properties and therapeutic strategies. Mater Sci Eng C Mater Biol Appl 68(1):982–994. https://doi.org/10.1016/j.msec.2016.05.119

    Article  CAS  PubMed  Google Scholar 

  10. Shah RM, Malherbe F, Eldridge D, Palombo EA, Harding IH (2014) Physicochemical characterization of solid lipid nanoparticles prepared by a novel microemulsion technique. J Colloid Interface Sci 428:286–294. https://doi.org/10.1016/j.jcis.2014.04.057

    Article  CAS  PubMed  Google Scholar 

  11. Bolla PK, Kalhapure RS, Rodriguez VA, Ramos DV, Dahl A, Renukuntla J (2019) Preparation of solid lipid nanoparticles of furosemide-silver complex& evaluation of antibacterial activity. J Drug Deliv Sci Technol 49:6–13. https://doi.org/10.1016/j.jddst.2018.10.035

    Article  CAS  Google Scholar 

  12. Mehnert W, Mader K (2013) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 64:83–101. https://doi.org/10.1016/S0169-409X(01)00105-3

    Article  Google Scholar 

  13. Müller RH, Runge SA, Ravelli V, Thünemann AF, Mehnert W, Souto EB (2008) Cyclosporine-loaded solid lipid nanoparticles (SLN): drug–lipid physicochemical interactions and characterization of drug incorporation. Eur J Pharm Biopharm 68:535–544. https://doi.org/10.1016/j.ejpb.2007.07.006

    Article  CAS  PubMed  Google Scholar 

  14. Hu FQ, Hong Y, Yuan H (2004) Preparation and characterization of solid lipid nanoparticles containing peptide. Int J Pharm 273(1–2):29–35. https://doi.org/10.1016/j.ijpharm.2003.12.016

    Article  CAS  PubMed  Google Scholar 

  15. Reithmeier H, Herrmann J, Gopferich A (2001) Development and characterization of lipid microparticles as a drug carrier for somatostatin. Int J Pharm 218(1–2):133–143. https://doi.org/10.1016/s0378-5173(01)00620-2

    Article  CAS  PubMed  Google Scholar 

  16. Oliveira MS, Mussi SV, Gomes DA, Yoshida MI, Frezard F, Carregal VM, Ferreira LAM (2016) α-Tocopherol succinate improves encapsulation and anticancer activity of doxorubicin loaded in solid lipid nanoparticles. Colloids Surf. B. Biointerfaces. 140:246–253. https://doi.org/10.1016/j.colsurfb.2015.12.019

    Article  CAS  PubMed  Google Scholar 

  17. Abdelbary G, Fahmy RH (2009) Diazepam-loaded solid lipid nanoparticles: design and characterization. AAPS PharmSciTech 10(1):211–219. https://doi.org/10.1208/s12249-009-9197-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee MK, Lim SJ, Kim CK (2007) Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials 28(12):2137–2146. https://doi.org/10.1016/j.biomaterials.2007.01.014

    Article  CAS  PubMed  Google Scholar 

  19. Ahmad N, Alam MA, Ahmad FJ, Sarafroz M, Ansari K, Sharma S, Amir M (2018) Ultrasonication techniques used for the preparation of novel eugenol-nanoemulsion in the treatment of wounds healings and anti-inflammatory. J Drug Deliv Sci Technol. 46:461–473. https://doi.org/10.1016/j.jddst.2018.06.003

    Article  CAS  Google Scholar 

  20. Ahmad N, Ahmad R, Alam MA, Ahmad FJ, Amir M (2018) Impact of ultrasonication techniques on the preparation of novel Amiloride-nanoemulsion used for intranasal delivery in the treatment of epilepsy. Artif Cells Nanomed Biotechnol. 46:1–16. https://doi.org/10.1080/21691401.2018.1489826

    Article  CAS  Google Scholar 

  21. Ganesana P, Narayanasamya D (2017) Lipid nanoparticles: different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain Chem Pharm 6:37–56. https://doi.org/10.1016/j.scp.2017.07.002

    Article  Google Scholar 

  22. Shah RM, Eldridge DS, Palombo EA, Harding IH (2017) Microwave assisted microemulsion technique for production of miconazole nitrate- and econazole nitrate-loaded solid lipid nanoparticles. Eur J Pharm Biopharm 117:141–150. https://doi.org/10.1016/j.ejpb.2017.04.007

    Article  CAS  PubMed  Google Scholar 

  23. An Z, Tang W, Hawker CJ, Stucky GD (2006) One step microwave preparation of well-defined and functionalized polymeric nanoparticles. J Am Chem Soc 128(47):15054–15055. https://doi.org/10.1021/ja065250f

    Article  CAS  PubMed  Google Scholar 

  24. Xu Z, Hu X, Li X, Yi C (2007) Monodispersed PEG-b-Pst nanoparticles prepared by atom transfer radical emulsion polymerization under microwave irradiation. J Polym Sci Part-A polym chem. 46:481–488. https://doi.org/10.1002/pola.22399

    Article  CAS  Google Scholar 

  25. Gasco M (1993). Method for producing solid lipid microspheres having a narrow size distribution. US Patent.US 5250236.

  26. Moulik, SP, Rakshit, AK (2006). Physicochemistry and applications of microemulsions. J Surface Sci Technol 22(3–4):159–186

  27. Harde H, Das M, Jain S (2011) Solid lipid nanoparticles: an oral bioavailability enhancer vehicle. Exp Opin Drug Deliv 8(11):1407–1424. https://doi.org/10.1517/17425247.2011.604311

    Article  CAS  Google Scholar 

  28. Havlickova B, Czaika VA, Friedrich M (2008) Epidemiological trends in skin mycoses worldwide. Mycoses 51:2–15. https://doi.org/10.1111/j.1439-0507.2008.01606.x

    Article  PubMed  Google Scholar 

  29. Khanna D, Bharti S (2014) Luliconazole for the treatment of fungal infections: an evidence-based review. Core Evid 9:113–124. https://doi.org/10.2147/CE.S49629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gomes MJ, Martins S, Ferreira D, Segundo MA, Reis S (2014) Lipid nanoparticles for topical and transdermal application for alopecia treatment: development, physicochemical characterization and in vitro release and penetration studies. Int J Nanomed 9:1231–1232. https://doi.org/10.2147/IJN.S45561

    Article  CAS  Google Scholar 

  31. Luo Y, Chen D, Ren L, Zhao X, Qin J (2006) Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J Control Rel 114(1):53–59. https://doi.org/10.1016/j.jconrel.2006.05.010

    Article  CAS  Google Scholar 

  32. Shah RM, Eldridge DS, Palombo EA, Harding IH (2016) Encapsulation of clotrimazole into solid lipid nanoparticles by microwave-assisted microemulsion technique. Applied Materials Today 5:118–127. https://doi.org/10.1016/j.apmt.2016.09.010

    Article  Google Scholar 

  33. https://refubium.fu-berlin.de/bitstream/handle/fub188/11046/06_7Chapter7.pdf. Retrieved November 02, 2019.

  34. Patravale VB, Date AA, Kulkarni RM (2004) Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol 56:827–840. https://doi.org/10.1211/0022357023691

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors express gratitude to Department of Science and Technology, Government of India, for providing financial assistance to Jyoti Mundlia under DST-PURSE Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munish Ahuja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Mundlia, J., Kumar, T. et al. A novel microwave-assisted synthesis, characterization and evaluation of luliconazole-loaded solid lipid nanoparticles. Polym. Bull. 78, 2553–2567 (2021). https://doi.org/10.1007/s00289-020-03220-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03220-5

Keywords

Navigation