Skip to main content
Log in

Dielectric properties of natural rubber/polyethylene oxide block copolymer complexed with transition metal ions

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Transition metal ion complexes of natural rubber/polyethylene oxide block copolymer (NR/PEO block copolymer, BC) are prepared by the process of adsorption in aqueous solutions and subjected to electrical analysis and XRD studies. AC conductance, impedance, dielectric relaxation and modulus have been measured as a function of frequency. The conductivity shows a linear relation with frequency. Among the complexes studied, BC–Co(II) shows the highest conductivity, while BC–Cu(II) shows the lowest value which may be due to different coordination pattern adopted. The Nyquist plot of impedance shows that except BC and BC–Cu(II), other samples give single skewed semicircles, while the former two yield arc bending towards the abscissa. The relaxation studies indicate electrode polarisation effect at lower frequencies and ion migration at higher frequencies. Argand plot indicates the presence of viscoelastic relaxation, and a distribution of relaxation time occurs in all the samples. XRD results support the electrical properties observed for the BC and the complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kumar JS, Subrahmanyam AR, Reddy MJ, Rao UVS (2006) Preparation and study of properties of polymer electrolyte system (PEO+NaClO3). Mater Lett 60:3346–3349. https://doi.org/10.1016/j.matlet.2006.03.015

    Article  CAS  Google Scholar 

  2. Ahmad A, Saqan S, Ramadin Y, Zihlif A (2006) The thermoelectrical behaviour of PEO films doped with MnCl2 salt. J Thermoplast Compos Mater 19:531–544. https://doi.org/10.1177/0892705706063926

    Article  CAS  Google Scholar 

  3. Dygas JR, Misztal-Faraj B, Florjanczyk Z et al (2003) Effects of inhomogeneity on ionic conductivity and relaxations in PEO and PEO–salt complexes. Solid State Ion 157:249–256. https://doi.org/10.1016/S0167-2738(02)00217-5

    Article  CAS  Google Scholar 

  4. Biryan F, Tuncer H, Demirelli K (2019) Electrical, thermal behaviors and synthesis of intramolecular cobalt phthalocyanine with single-chain polymer structure. Polym Bull. https://doi.org/10.1007/s00289-019-02871-3

    Article  Google Scholar 

  5. Basha SKS, Sundari GS, Kumar KV, Rao MC (2018) Preparation and dielectric properties of PVP-based polymer electrolyte films for solid-state battery application. Polym Bull 75:925–945. https://doi.org/10.1007/s00289-017-2072-5

    Article  CAS  Google Scholar 

  6. Kumar KN, Saijyothi K, Vijayalakshmi L, Kang M (2017) Copper—constantan nanoparticles impregnated PEO + PVP : Li+ blended solid polymer electrolyte films for lithium battery applications. Polym Bull 74:2545–2564. https://doi.org/10.1007/s00289-016-1849-2

    Article  CAS  Google Scholar 

  7. Saqan SA, Ayesh AS, Zihlif AM et al (2004) Physical properties of polystyrene / alum composites. Polym Test 23:739–745. https://doi.org/10.1016/j.polymertesting.2004.04.008

    Article  CAS  Google Scholar 

  8. Singh PK, Chandra A (2003) Role of the dielectric constant of ferroelectric ceramic in enhancing the ionic conductivity of a polymer electrolyte composite. J Phys D Appl Phys 36:L93–L96. https://doi.org/10.1088/0022-3727/36/19/L01

    Article  CAS  Google Scholar 

  9. Vincent CA (1987) Polymer electrolytes. Prog Solid St Chem 17:145–261. https://doi.org/10.1016/0079-6786(87)90003-3

    Article  CAS  Google Scholar 

  10. Armand M (1983) Polymer solid electrolytes—an overview. Solid State Ion 9 & 10:745–754. https://doi.org/10.1016/0167-2738(83)90083-8

    Article  Google Scholar 

  11. Berthier C, Gorecki W, Minier M et al (1983) Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ion 11:91–95. https://doi.org/10.1016/0167-2738(83)90068-1

    Article  CAS  Google Scholar 

  12. Ramesh S, Yuen TF, Shen CJ (2008) Conductivity and FTIR studies on PEO-LiX [X: CF3SO3-, SO42] polymer electrolytes. Spectrochim Acta Part A 69:670–675. https://doi.org/10.1016/j.saa.2007.05.029

    Article  CAS  Google Scholar 

  13. Karan NK, Pradhan DK, Thomas R et al (2008) Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro- methane sulfonate (PEO-LiCF3SO3): Ionic conductivity and dielectric relaxation. Solid State Ion 179:689–696. https://doi.org/10.1016/j.ssi.2008.04.034

    Article  CAS  Google Scholar 

  14. Fanggao C, Saunders GA, Lambson EF et al (1996) Temperature and frequency dependencies of the complex dielectric constant of poly(ethylene oxide) under hydrostatic pressure. J Polym Sci Part B Polym Phys 34:425–433. https://doi.org/10.1002/(SICI)1099-0488(199602)34:3%3c425:AID-POLB3%3e3.0.CO;2-S

    Article  Google Scholar 

  15. Pandey GP, Kumar Y, Hashmi SA (2011) Ionic liquid incorporated PEO based polymer electrolyte for electrical double layer capacitors: a comparative study with lithium and magnesium systems. Solid State Ion 190:93–98. https://doi.org/10.1016/j.ssi.2011.03.018

    Article  CAS  Google Scholar 

  16. Michael MS, Jacob MME, Prabaharan SRS, Radhakrishna S (1997) Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers. Solid State Ion 98:167–174. https://doi.org/10.1016/S0167-2738(97)00117-3

    Article  CAS  Google Scholar 

  17. Murugendrappa MV, Khasim S, Ambika Prasad MVN (2000) Conductivity and DSC studies of poly(ethylene glycol) and its salt complexes. Indian J Eng Mater Sci 7:456–458

    CAS  Google Scholar 

  18. Sreekanth T, Jaipal Reddy M, Subramanyam S, Subba Rao UV (1999) Ion conducting polymer electrolyte films based on (PEO+KNO3) system and its application as an electrochemical cell. Mater Sci Eng B 64:107–112. https://doi.org/10.1016/S0921-5107(99)00147-6

    Article  Google Scholar 

  19. Ayesh AS (2009) Dielectric properties of polyethylene oxide doped with NH4I Salt. Polym J 41:616–621. https://doi.org/10.1295/polymj.PJ2009047

    Article  CAS  Google Scholar 

  20. Glasse MD, Idris R, Latham RJ et al (2002) Polymer electrolytes based on modified natural rubber. Solid State Ion 147:289–294

    Article  CAS  Google Scholar 

  21. Nair RC, Gopakumar S, Nair MRG (2007) Synthesis and characterization of block copolymers based on natural rubber and polypropylene oxide. J Appl Polym Sci 103:955–962. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  22. Mrudula MS, Tiwari N, Jha SN et al (2019) Structural studies on transition metal ion complexes of polyethylene oxide-natural rubber block copolymers. J Polym Res 26:1–16. https://doi.org/10.1007/s10965-019-1837-y

    Article  CAS  Google Scholar 

  23. Tripathi SK, Gupta A, Kumari M (2012) Studies on electrical conductivity and dielectric behaviour of PVdF–HFP–PMMA–NaI polymer blend electrolyte. Bull MaterSci 35:969–975. https://doi.org/10.1007/s12034-012-0387-2

    Article  CAS  Google Scholar 

  24. Mohomed K, Gerasimov TG, Moussy F, Harmon JP (2005) A broad spectrum analysis of the dielectric properties of poly(2-hydroxyethyl methacrylate). Polymer 46:3847–3855. https://doi.org/10.1016/j.polymer.2005.02.100

    Article  CAS  Google Scholar 

  25. Sambhudevan S, Shankar B, Saritha A et al (2017) Development of X-ray protective garments from rare earth-modified natural rubber composites. J Elastomers Plast 49:527–544. https://doi.org/10.1177/0095244316676866

    Article  CAS  Google Scholar 

  26. Johns J, Rao V (2009) Thermal stability, morphology, and X-ray diffraction studies of dynamically vulcanized natural rubber/chitosan blends. J Mater Sci 44:4087–4094. https://doi.org/10.1007/s10853-009-3589-2

    Article  CAS  Google Scholar 

  27. Bhat NV, Deshmukh RR (2002) X-ray crystallographic studies of polymeric materials. Indian J Pure Appl Phys 40:361–366

    CAS  Google Scholar 

  28. Yu LQ, Zheng LJ, Yang JX (2000) Study of preparation and properties on magnetization and stability for ferromagnetic fluids. Mater Chem Phys 66:6–9. https://doi.org/10.1016/S0254-0584(00)00236-4

    Article  CAS  Google Scholar 

  29. Sundaramahalingam K, Vanitha D, Nallamuthu N et al (2019) Electrical properties of lithium bromide poly ethylene oxide/poly vinyl pyrrolidone polymer blend electrolyte. Phys B Condens Matter 553:120–126. https://doi.org/10.1016/j.physb.2018.10.040

    Article  CAS  Google Scholar 

  30. Yoshizawa M, Marwanta E, Ohno H (2000) Preparation and characteristics of natural rubber/poly(ethylene oxide) salt hybrid mixtures as novel polymer electrolytes. Polymer 41:9049–9053. https://doi.org/10.1016/S0032-3861(00)00277-9

    Article  CAS  Google Scholar 

  31. Abdullah A, Abdullah SZ, Ali AMM et al (2009) Electrical properties of PEO–LiCF3SO3–SiO2 nanocomposite polymer electrolytes. Mater Res Innov 13:255–258. https://doi.org/10.1179/143307509X440451

    Article  CAS  Google Scholar 

  32. Noor SAM, Ahmad A, Talib IA, Rahman MYA (2010) Morphology, chemical interaction, and conductivity of a PEO-ENR50 based on solid polymer electrolyte. Ionics 16:161–170. https://doi.org/10.1007/s11581-009-0385-6

    Article  CAS  Google Scholar 

  33. Ma Q, Liu J, Qi X et al (2017) New Na[(FSO2)(n-C4F9SO2)N]-based polymer electrolyte for solid-state sodium batteries. J Mater Chem A 5:7738–7743. https://doi.org/10.1039/C7TA01820G

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Priyanka K G, SCS, MG university, Kottayam and Jince Thomas, Centre for Nano Science and Nano Technology, M G University, Kottayam for their valuable help for the conductivity studies. We extended our thanks to Dr. Simon Augustine, H.O.D, Asso. Professor, Physics Department, St. Thomas College, Pala for XRD analysis and N. Tiwari, S. N. Jha, D. Bhattacharyya, RRCAT, Indore for the provision of EXAFS analysis and their valuable help in running the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Gopinathan Nair.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mrudula, M.S., Gopinathan Nair, M.R. Dielectric properties of natural rubber/polyethylene oxide block copolymer complexed with transition metal ions. Polym. Bull. 77, 6029–6048 (2020). https://doi.org/10.1007/s00289-019-03035-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-03035-z

Keywords

Navigation