Skip to main content
Log in

Eco-friendly conductive polymer-based nanocomposites, BiVO4/graphene oxide/polyaniline for excellent photocatalytic performance

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, we describe the structure of bismuth vanadate (BiVO4)/graphene oxide/polyaniline (PANI) compound with exploited interfacial coupling, their use as visible-light photocatalysts and safety property. Thin graphene oxide sheets could completely cover BiVO4 polyhedrons with vastly conductive polymer PANI through an evaporation-induced hydrothermal process. The enhanced surface adsorption outcome of GO, a huge improvement in the photoactivity of BiVO4, has been proved through the degradation of methylene blue (MB) and safranin O (SO) upon the covering of polyaniline. The improved photocatalytic activity is recognized for the development of well-defined BiVO4/GO/PANI interfaces which considerably increases the charge separation efficacy. Conversely, safety aspects are investigated for identifying the toxicity of samples on the different kinds of bacteria. Our study found that in the existence of every sample the bacteria could not be killed throughout the culture medium. Considering its ease of preparation and excellent performance, BiVO4/GO/PANI could be a promising, competitive and safe visible-light-driven photocatalyst in the field of environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Xiao J, Xie Y, Cao H (2015) Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. Chemosphere 121:1–17

    Article  CAS  PubMed  Google Scholar 

  2. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  3. Li H, Yu H, Quan X, Chen S, Zhao H (2015) Improved photocatalytic performance of heterojunction by controlling the contact facet: high electron transfer capacity between TiO2 and the 110 facet of BiVO4 caused by suitable energy band alignment. Adv Func Mater 25:3074–3080

    Article  CAS  Google Scholar 

  4. Ameen S, Seo HK, Akhtar MS, Shin HS (2012) Novel graphene/polyaniline nanocomposites and its photocatalytic activity toward the degradation of rose Bengal dye. Chem Eng J 210:220–228

    Article  CAS  Google Scholar 

  5. Yuan H, Liu J, Li J, Li Y, Wang X, Zhang Y, Jiang J, Chen S, Zhao C, Qian D (2015) Designed synthesis of a novel BiVO4–Cu2O–TiO2 as an efficient visible-light-responding photocatalyst. J Colloid Interface Sci 444:58

    Article  CAS  PubMed  Google Scholar 

  6. Liao G, Chen S, Quan X, Zhang Y, Zhao H (2011) Remarkable improvement of visible light photocatalysis with PANI modified core–shell mesoporous TiO2 microspheres. Appl Catal B 102:126–131

    Article  CAS  Google Scholar 

  7. Nanakkal AR, Alexander LK (2017) Graphene/BiVO4/TiO2 nanocomposite: tuning band gap energies for superior photocatalytic activity under visible light. J Mater Sci 52:7997–8006

    Article  CAS  Google Scholar 

  8. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2009) The chemistry of graphene oxide. Chem Soc Rev Chem Soc Rev 39:228–240

    Article  PubMed  Google Scholar 

  9. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  PubMed  Google Scholar 

  10. Zhu Z, Han Q, Yu D, Sun J, Liu B (2017) A novel p-n heterojunction of BiVO4/TiO2/GO composite for enhanced visible-light-driven photocatalytic activity. Mater Lett 209:379–383

    Article  CAS  Google Scholar 

  11. Ahmad I, Koziol K, Deveci S, Kim HK, Kumar R (2018) Advancing the use of high-performance graphene-based multimodal polymer nanocomposite at scale. Nanomaterials 8(11):947

    Article  PubMed Central  CAS  Google Scholar 

  12. Paulchamy B, Arthi G, Lignesh BD (2015) A simple approach to stepwise synthesis of graphene oxide nanomaterial. J Nanomed Nanotechnol 6(1):1

    Google Scholar 

  13. Wang X, Zhang J, Zhang K, Zou W, Chen S (2016) Facile fabrication of reduced graphene oxide/CuI/PANI nanocomposites with enhanced visible-light photocatalytic activity. RSC Adv 6:44851–44858

    Article  CAS  Google Scholar 

  14. Zhao J, Biswas MRUD, Oh WC (2019) A novel BiVO4–GO–TiO2–PANI composite for upgraded photocatalytic performance under visible light and its non-toxicity. Environ Sci Pollut Res 26(12):11888–11904

    Article  CAS  Google Scholar 

  15. Pandey M, Balachandran M, Joshi GM, Ghosh NN, Vendan AS (2019) Superior charge discharge ability of reduced graphene oxide/Li-ion embedded polymer composite films. J Mater Sci: Mater Electron 30(3):2136–2145

    CAS  Google Scholar 

  16. Ventura SP, de Barros RL, Sintra T, Soares CM, Lima AS, Coutinho JA (2012) Simple screening method to identify toxic/non-toxic ionic liquids: agar diffusion test adaptation. Ecotoxicol Environ Saf 83:55–62

    Article  CAS  PubMed  Google Scholar 

  17. Kirby W, Bauer AW, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol 45:493–496

    Article  PubMed  Google Scholar 

  18. Hokimura S, Moniz SA, Handoko A, Tang J (2014) Enhanced photoelectrochemical water splitting by nanostructured BiVO4–TiO2 composite electrodes. J Mater Chem A 2:3948–3953

    Article  CAS  Google Scholar 

  19. Miao J, Xie A, Li S, Huang F, Cao J, Shen Y (2016) A novel reducing graphene/polyaniline/cuprous oxide composite hydrogel with unexpected photocatalytic activity for the degradation of Congo red. Appl Surf Sci 360:594–600

    Article  CAS  Google Scholar 

  20. Al-Hussaini S, Eltabie RK, Rashad MEE (2016) One-pot modern fabrication and characterizati on of TiO 2 @terpoly (aniline, anthranilic acid and o-phenylenediamine) core–shell nanocomposites via polycondensation. Polymer 101:328–337

    Article  CAS  Google Scholar 

  21. Patil PT, Anwane RS, Kondawar SB (2015) Development of electrospun polyaniline/ZnO composite nanofibers for LPG sensing. Procedia Mater Sci 10:195–204

    Article  CAS  Google Scholar 

  22. Wu W, Liang S, Shen L, Ding Z, Zheng H, Su W, Wu L (2012) Preparation, characterization and enhanced visible light photocatalytic activities of polyaniline/Bi3 NbO7 nanocomposites. J Alloy Compd 520:213–219

    Article  CAS  Google Scholar 

  23. Lin YC, Hsu FH, Wu TM (2013) Enhanced conductivity and thermal stability of conductive polyaniline/graphene composite synthesized by in situ chemical oxidation polymerization with sodium dodecyl sulfate. Synth Met 184:29–34

    Article  CAS  Google Scholar 

  24. Zhang K, Zhang LL, Zhao XS, Wu J (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22:1392–1401

    Article  CAS  Google Scholar 

  25. Li H, Sun Y, Cai B, Gan S, Han D, Niu L, Wu T (2015) Hierarchically Z-scheme photocatalyst of Ag@ AgCl decorated on BiVO4 (040) with enhancing photoelectrochemical and photocatalytic performance. Appl Catal B 170:206–214

    Article  CAS  Google Scholar 

  26. Huang CM, Pan GT, Peng PY, Yang CK (2010) In situ DRIFT study of photocatalytic degradation of gaseous isopropanol over BiVO4 under indoor illumination. J Mol Catal A: Chem 327:38–44

    Article  CAS  Google Scholar 

  27. Yousefzadeh S, Faraji M, Moshfegh AZ (2016) Constructing BiVO4/Graphene/TiO2 nanocomposite photoanode for photoelectrochemical conversion applications. J Electroanal Chem 763:1–9

    Article  CAS  Google Scholar 

  28. Jing L, Yang ZY, Zhao YF, Zhang YX, Guo X, Yan YM, Sun KN (2013) Ternary polyaniline-graphene-TiO2 hybrid with enhanced activity for visible-light photo-electrocatalytic water oxidation. J Mater Chem A 2:1068–1075

    Article  Google Scholar 

  29. Domingues SH, Salvatierra RV, Oliveira MM, Zarbin AJ (2011) Transparent and conductive thin films of graphene/polyaniline nanocomposites prepared through interfacial polymerization. Chem Commun 47:2592–2594

    Article  CAS  Google Scholar 

  30. Li X, Teng W, Zhao Q, Wang L (2011) Efficient visible light-induced photoelectrocatalytic degradation of rhodamine B by polyaniline-sensitized TiO2 nanotube arrays. J Nanopart Res 13:6813–6820

    Article  CAS  Google Scholar 

  31. Biswas MRUD, Oh WC (2018) Synthesis of BiVO4–GO–PVDF nanocomposite: an excellent, newly designed material for high photocatalytic activity towards organic dye degradation by tuning band gap energies. Solid State Sci 80:22–30

    Article  CAS  Google Scholar 

  32. Yu J, Xiong J, Cheng B, Liu S (2005) Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl Catal B 60(3–4):211–221

    Article  CAS  Google Scholar 

  33. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183

    Article  CAS  PubMed  Google Scholar 

  34. Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A (2012) Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomed 7:6003

    Article  CAS  Google Scholar 

  35. Reddy KR, Karthik KV, Prasad SBB, Soni SK, Han MJ, Raghu AV (2016) Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120:169–174

    Article  CAS  Google Scholar 

  36. Biswas MRUD, Oh WC (2019) Comparative study on gas sensing by a Schottky diode electrode prepared with graphene–semiconductor–polymer nanocomposites. RSC Adv 9(20):11484–11492

    Article  CAS  Google Scholar 

  37. Kim F, Cote LJ, Huang J (2010) Graphene oxide: surface activity and two-dimensional assembly. Adv Mater 22(17):1954–1958

    Article  CAS  PubMed  Google Scholar 

  38. Cote LJ, Kim J, Tung VC, Luo J, Kim F, Huang J (2010) Graphene oxide as surfactant sheets. Pure Appl Chem 83(1):95–110

    Article  CAS  Google Scholar 

  39. Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29(5):205–212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Biswas MRUD, Cho KY, Jung CH, Oh WC (2019) Novel synthesis of LaNiSbWO4–G–PANI designed as quaternary type composite for high photocatalytic performance of anionic dye and trihydroxybenzoic acid under visible-light. Process Saf Environ Prot 126:348–355

    Article  CAS  Google Scholar 

  41. Xu Y, Mo Y, Tian J, Wang P, Yu H, Yu J (2016) The synergistic effect of graphitic N and pyrrolic N for the enhanced photocatalytic performance of nitrogen-doped graphene/TiO2 nanocomposites. Appl Catal B 181:810–817

    Article  CAS  Google Scholar 

  42. Su W, Lu X, Jia S, Wang J, Ma H, Xing Y (2015) Catalytic reduction of NOX Over TiO2–graphene oxide supported with MnOX at low temperature. Catal Lett 145(7):1446–1456

    Article  CAS  Google Scholar 

  43. Dowla BMRU, Cho JY, Jang WK, Oh WC (2017) Synthesis of BiVO4–GO–PTFE nanocomposite photocatalysts for high efficient visible-light-induced photocatalytic performance for dyes. J Mater Sci: Mater Electron 28(20):15106–15117

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won-Chun Oh.

Ethics declarations

Funding

No funding was received in this study. It has been done by self-funding.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, M.R.U.D., Ho, B.S. & Oh, WC. Eco-friendly conductive polymer-based nanocomposites, BiVO4/graphene oxide/polyaniline for excellent photocatalytic performance. Polym. Bull. 77, 4381–4400 (2020). https://doi.org/10.1007/s00289-019-02973-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02973-y

Keywords

Navigation