Skip to main content

Advertisement

Log in

Poly(amino acid)/ZnO nanoparticles nanocomposites with enhanced thermal, mechanical, and antibacterial properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poly(amino acid) (PAA)-based nanocomposites were synthesized by in situ melting polycondensation with addition of different contents of ZnO nanoparticles (ZnO NPs); the morphology and thermal, mechanical, cytotoxicity, antibacterial and dielectric properties of the resulting nanocomposites were investigated and characterized. The nanoparticles were dispersed within the matrix without the need for coupling agent and surfactants. The crystallization temperature had a gradual rise with increasing ZnO NP loading, confirming that the nanoparticles act as nucleating agents for PAA crystallization. The nanoparticles increased the thermal stability of the matrix. The mechanical properties were gradually enhanced by increasing the ZnO NP content except for the elongation at break, which showed its highest value at 1 wt% ZnO NP contents. They also exhibited active inhibition against both Gram-positive and Gram-negative bacteria, which was gradually enhanced with increase in ZnO NP content. Meanwhile, the nanocomposites showed no obvious cytotoxicity. Thus, these nanocomposites are suitable as performance materials in the field of medical apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zha J, Chen G, Dang Z, Yin Y (2011) The influence of TiO2 nanoparticle incorporation on surface potential decay of corona-resistant polyimide nanocomposites films. J Electrost 69:255–260

    CAS  Google Scholar 

  2. Fasahat F, Dastjerdi R, Mojtahedi MRM, Hoseini P (2015) Wear properties of high speed spun multi-component PA6 nanocomposites fabrics; abrasion resistance mechanism of nanocomposites. Wear 322–323:117–125

    Google Scholar 

  3. Mallakpour S, Marefatpour F (2014) Novel chiral poly(amide-imide)/surface modified SiO2 nanocomposites based on N-trimellitylimido-l-methionine: synthesis and a morphological study. Prog Org Coat 77:1271–1276

    CAS  Google Scholar 

  4. Kickelbick G (2003) Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog Polym Sci 28:83–114

    CAS  Google Scholar 

  5. Jeon IY, Baek JB (2010) Nanocomposites derived from polymers and inorganic nanoparticles. Materials 3:3654–3674

    CAS  PubMed Central  Google Scholar 

  6. Saeed AME, El-Fattah MA, Azzam AM (2015) Synthesis of ZnO nanoparticles and studying its influence on the antimicrobial, anticorrosion and mechanic al behavior of polyurethane composite for surface coating. Dyes Pigments 121:282–289

    Google Scholar 

  7. Naffakh M, Diez-Pascual AM, Marco C, Ellis GJ, Gomez-Fatou MA (2013) Opportunities and challenges in the use of inorganic fullerene-like nanoparticles to produce advanced polymer nano-composites. Prog Polym Sci 38:1163–1231

    CAS  Google Scholar 

  8. Kim KT, Jo WH (2011) Non-destructive functionalization of multi-walled carbon nanotubes with naphthalene-containing polymer for high performance nylon66/multi-walled carbon nanotubes composites. Carbon 49:819–826

    CAS  Google Scholar 

  9. Jogi BF, Sawant M, Brahmankar PK, Ratna D, Tarhekar MC (2014) Study of mechanical and crystalline behavior of polyamide 6/Hytrel/Carbon Nanotubes (CNT) based polymer composites. Proc Mater Sci 6:805–811

    CAS  Google Scholar 

  10. Kudo K, Mochizuki M, Kiriyama S, Watanabe M, Hirami M (1994) Studies on the structure and properties of nylon 46 fiber. I: dimensional stability. J Appl Polym Sci 52:861–867

    CAS  Google Scholar 

  11. Rao AP, Joshi SV, Trivedi JJ, Devmurari CV, Shah VJ (2003) Structure performance correlation of polyamide thin film composite membranes: effect of coating conditions on film formation. J Membr Sci 211:13–24

    CAS  Google Scholar 

  12. Yang K, Wei J, Wang C, Li Y (2007) A study on in vitro and in vivo bioactivity of nano hydroxyapatite/polymer biocomposite. Sci Bull 52:267–271

    CAS  Google Scholar 

  13. Mallakpour S, Asadi P, Sabzalian MR (2011) Synthesis of biodegradable chiral poly(ester-imide)s derived from valine-, leucine- and tyrosine-containing monomers. Amino Acids 41:1215–1222

    CAS  PubMed  Google Scholar 

  14. Mallakpour S, Soltanian S (2010) Studies on syntheses and morphology characteristic of chiral novel poly(ester-imide)/TiO2 bionanocomposites derived from l-phenylalanine based diacid. Polymer 51:5369–5376

    CAS  Google Scholar 

  15. Li H, Yang L, Dong X, Gu Y, Lv G, Yan Y (2014) Composite scaffolds of nano calcium deficient hydroxyapatite/multi-(amino acid) copolymer for bone tissue regeneration. J Mater Sci Mater Med 25:1257–1265

    CAS  PubMed  Google Scholar 

  16. Fan X, Ren H, Luo X, Wang P, Lv G, Yuan H, Li H, Yan Y (2016) Mechanics, degradability, bioactivity, in vitro and in vivo biocompatibility evaluation of poly (amino acid)/hydroxyapatite/calcium sulfate composite for potential load-bearing bone repair. J Biomater Appl 30:1261–1272

    CAS  PubMed  Google Scholar 

  17. Wang ZL (2007) Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing. Appl Phys A 88:7–15

    CAS  Google Scholar 

  18. Behnajady MA, Modirshahla N, Hamzavi R (2006) Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J Hazard Mater 133:226–232

    CAS  PubMed  Google Scholar 

  19. Dang ZM, Fan LZ, Zhao SJ, Nan CW (2003) Preparation of nanosized ZnO and dielectric properties of composites filled with nanosized ZnO. Mater Sci Eng B 99:386–389

    Google Scholar 

  20. Li SC, Li YN (2010) Mechanical and antibacterial properties of modified nano-ZnO/high-density polyethylene composite films with a low doped content of nano-ZnO. J Appl Polym Chem 116:2965–2969

    CAS  Google Scholar 

  21. Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater 3:643–646

    CAS  Google Scholar 

  22. Wang Y, Shi J, Han L, Xiang F (2009) Crystallization and mechanical properties of T-ZnOw/HDPE composites. Mater Sci Eng A 50:220–228

    Google Scholar 

  23. Shi J, Wang Y, Gao Y, Bai H (2008) Effects of coupling agents on the impact fracture behaviors of T-ZnOw/PA6 composites. Compos Sci Technol 68:1338–1347

    CAS  Google Scholar 

  24. Zheng J, Siegel RW, Toney CG (2003) Polymer crystalline structure and morphology changes in nylon-6/ZnO nanocomposites. J Polym Sci Polym Phys 41:1033–1050

    CAS  Google Scholar 

  25. Mallakpour S, Behranvand V (2016) Nanocomposites based on biosafe nano ZnO and different polymeric matrixes for antibacterial, optical, thermal and mechanical applications. Eur Polym J 84:377–403

    CAS  Google Scholar 

  26. Kim SS, Park MS, Jeon O, Choi CY, Kim BS (2006) Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27:1399–1409

    CAS  PubMed  Google Scholar 

  27. Charles-Harris M, Navarro M, Engel E, Aparicio C, Ginebra MP, Planell JA (2005) Surface characterization of completely degradable composite scaffolds. J Mater Sci-Mater Med 16:1125–1130

    CAS  PubMed  Google Scholar 

  28. Fan X, Ren H, Yan Y (2018) Poly(amino acid)/carbon nanotube nanocomposites with enhanced thermal, electrical, and mechanical properties. Polym Compos 39:1939–1949

    Google Scholar 

  29. Li H, Yan Y, Wei J, Ma J, Gong M, Luo X, Zhang Y (2011) Bone substitute biomedical material of multi-(amino acid) copolymer: in vitro degradation and biocompatibility. J Mater Sci Mater Med 22:2555–2563

    PubMed  Google Scholar 

  30. Fan X, Zhang T, Zhao Z, Ren H, Zhang Q, Yan Y, Lv G (2013) Preparation and characterization of bacterial cellulose microfiber/goat bone apatite composites for bone repair. J Appl Polym Sci 129:595–603

    CAS  Google Scholar 

  31. Abdolmaleki A, Mallakpour S, Borandeh S (2011) Preparation, characterization and surface morphology of novel optically active poly(ester-amide)/functionalized ZnO bionanocomposites via ultrasonication assisted process. Appl Surf Sci 257:6725–6733

    CAS  Google Scholar 

  32. Mahmood N, Islam M, Hameed A, Saeed S (2013) Polyamide 6/multiwalled carbon nanotubes nanocomposites with modified morphology and thermal properties. Polymer 5:1380–1391

    Google Scholar 

  33. Diez-Pascual AM, Diez-Vicente AL (2014) High-performance aminated poly(phenylene sulfide)/ZnO nanocomposites for medical applications. Asc Appl Mater Interfaces 6:10132–10145

    CAS  Google Scholar 

  34. Abdolmaleki A, Mallakpour S, Borandeh S (2012) The use of novel biodegradable, optically active and nanostructured poly(amide-ester-imide) as a polymer matrix for preparation of modified ZnO based bionanocomposites. Mater Res Bull 47:1123–1129

    CAS  Google Scholar 

  35. Velayutham TS, Majid WHA, Gan WC, Zak AK, Gan SN (2012) Theoretical and experimental approach on dielectric properties of ZnO nanoparticles and polyurethane/ZnO nanocomposites. J Appl Phys 112:54106–54116

    Google Scholar 

  36. Wei J, Heo SJ, Kim DH, Kim SE, Hyun YT, Shin JW (2008) Comparison of physical, chemical and cellular responses to nano- and micro-sized calcium silicate/poly(e-caprolactone) bioactive compos-ites. J R Soc Interface 5:617–630

    CAS  PubMed  Google Scholar 

  37. Diez-Pascual AM, Diez-Vicente AL (2014) Development of nanocomposites reinforced with carboxylated poly(ether ether ketone) grafted to zinc oxide with superior antibacterial properties. Asc Appl Mater Inter 6:3729–3741

    CAS  Google Scholar 

  38. Huang ZX, Tang ZA, Yu J, Bai S (2011) Thermal conductivity of nanoscale polycrystalline ZnO thin films. Phys B 406:811–823

    Google Scholar 

  39. Staneva D, Atanasova D, Vasileva-Tonkova E, Lukanova V, Grabchev I (2015) A cotton fabric modified with a hydrogel containing ZnO nanoparticles. Preparation and properties study. Appl Surf Sci 345:72–80

    CAS  Google Scholar 

  40. Tam KH, Djurisič AB, Chan CMN, Xi YY, Tse CW, Leung YH, Chan WK, Leung FCC, Au DWT (2008) Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films 516:6167–6174

    CAS  Google Scholar 

  41. Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 90:2139021–2139023

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Yan’an University (YDQ2018-36); the Science and Technology Bureau of Yan’an (2018KS-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxia Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Yan, Y. Poly(amino acid)/ZnO nanoparticles nanocomposites with enhanced thermal, mechanical, and antibacterial properties. Polym. Bull. 77, 2325–2343 (2020). https://doi.org/10.1007/s00289-019-02860-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02860-6

Keywords

Navigation