Skip to main content
Log in

Synthesis of water-soluble grafted chitosan copolymers by atom transfer radical polymerization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Chitosan acylation with 2-bromoisobutyryl bromide in dimethylformamide was studied to obtain a macroinitiator for the subsequent synthesis of graft copolymers of chitosan with trimethyloxyethylmethacryloylammonium methyl sulfate using Atom Transfer Radical Polymerization. The acylation reaction under heterophase conditions is a distinctive feature of the proposed approach. The advantages of this approach are the ease of obtaining a macroinitiator and zero destruction of chitosan samples. This will allow to obtain high molecular weight copolymers of chitosan. In this work, chitosan samples with different molecular weight (ranging from 110 to 260 kDa) and degree of deacetylation (80–92%) were studied. Elemental analysis, IR spectroscopy, and energy-dispersive analysis have shown that the acylation reaction proceeds via the NH2 group, because it is most reactive. Regardless of the molecular weight and degree of deacetylation, the degree of acylation is 76–99% with the optimal synthesis time of 1 day. Due to the extremely high sensitivity to contamination of the reaction and of the subsequent polymerization reaction, special attention is paid to the preparation of initial chitosan samples (i.e., purification from unreacted chitin and various impurities). The presented results on obtaining chitosan macroinitiator are novel and serve as the basis for the synthesis of graft copolymers of chitosan using Atom Transfer Radical Polymerization with a variable hydrophilic–lipophilic balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Muzzarelli RAA, Peter MG (1997) Chitin handbook. Grottammare, European Chitin Society, Atec, Pearland

    Google Scholar 

  2. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001

    Article  CAS  Google Scholar 

  3. Se-Kwon Kim (2010) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, Boca Raton

    Google Scholar 

  4. Ahmad AL, Sumathi S, Hameed BH (2004) Chitosan: a natural biopolymer for the adsorption of residue oil from oily wastewater. Adsorpt Sci Technol 22:75–88. https://doi.org/10.1260/026361704323151015

    Article  CAS  Google Scholar 

  5. Mourya VK, Inamdar NN (2008) Chitosan-modifications and applications: opportunities galore. React Funct Polym 68:1013–1051. https://doi.org/10.1016/j.reactfunctpolym.2008.03.002

    Article  CAS  Google Scholar 

  6. Ravi Kumar MNV, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6084. https://doi.org/10.1021/cr030441b

    Article  Google Scholar 

  7. Pestov A, Bratskaya S (2016) Chitosan and its derivatives as highly efficient polymer ligands. Molecules 21:330. https://doi.org/10.3390/molecules21030330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang J-P, Chen Y-Z, Yuan S-J, Sheng G-P, Yu H-Q (2009) Synthesis and characterization of a novel cationic chitosan-based flocculant with a high water-solubility for pulp mill wastewater treatment. Water Res 43:5267–5275. https://doi.org/10.1016/j.watres.2009.08.040

    Article  CAS  PubMed  Google Scholar 

  9. Heras A, Rodrigues NM, Ramos VM, Agullo E (2001) N-methylene phosphonic chitosan: a novel soluble derivative. Carbohydr Polym 44:1–8. https://doi.org/10.1016/S0144-8617(00)00195-8

    Article  CAS  Google Scholar 

  10. Ramos VM, Rodrygues NM, Dyaza MF, Rodrygues MS, Heras A, Agullo E (2003) N-methylene phosphonic chitosan. Effect of preparation methods on its properties. Carbohydr Polym 52:39–46. https://doi.org/10.1016/S0144-8617(02)00264-3

    Article  CAS  Google Scholar 

  11. Matevosyan GL, Yukha YS, Zavlin PM (2003) Phosphorylation of chitosan. Russ J Gen Chem 73:1725–1728. https://doi.org/10.1023/B:RUGC.0000018648.18120.18

    Article  CAS  Google Scholar 

  12. Ramos VM, Rodrygues NM, Rodrygues MS, Heras A, Agullo E (2003) Modified chitosan carrying phosphonic and alkyl groups. Carbohydr Polym 51:425–429. https://doi.org/10.1016/S0144-8617(02)00211-4

    Article  CAS  Google Scholar 

  13. Mouryaa VK, Nazma N (2010) Inamdara and Ashutosh Tiwar carboxymethyl chitosan and its applications. Adv Mater Lett 1(1):11–33. https://doi.org/10.5185/amlett.2010.3108

    Article  CAS  Google Scholar 

  14. Mochalova AE, Kruglova EN, Yunin PA, Apryatina KV, Smirnova ON, Smirnova LA (2015) Graft and block copolymers of chitosan with vinyl monomers: synthesis, structure, and properties. Polym Sci Ser B 57:93–105. https://doi.org/10.1134/S1560090415020116

    Article  CAS  Google Scholar 

  15. Mochalova AE, Zaborshchikova NV, Knyazeva AA, Smirnova LA, Izvozchikova VA, Medvedeva VV, Semchikov YuD (2006) Graft polymerization of acrylamide on chitosan: copolymer structure and properties. Polym Sci Ser A 48:918–923. https://doi.org/10.1134/S0965545X06090069

    Article  Google Scholar 

  16. Ozerin AN, Perov NS, Zelenetskii AN, Akopova TA, Ozerina LA, Kechek’yan AS, Surin NM, Vladimirov LV, Yulovskaya VD (2009) Hybrid nanocomposites based on graft copolymer of chitosan with poly(vinyl alcohol) and titanium oxide. Nanotechnol Russ 4(4–5):331–339. https://doi.org/10.1134/S1995078009050103

    Article  Google Scholar 

  17. Ozerin AN, Zelenetskii AN, Akopova TA, Ozerina LA, Surin NM, Kechek’yan AS, Pavlova-Verevkina OB (2006) Nanocomposites based on modified chitosan and titanium oxide. Polym Sci Ser A 48(6):638–643. https://doi.org/10.1134/S0965545X06060137

    Article  Google Scholar 

  18. Mochalova AE, Smirnova LA, Zaitsev SD, Semchikov YD, Zaitseva II, Pavlov GM (2007) Hydrodynamic and molecular characteristics of graft copolymers of chitosan with acrylamide. Polym Sci Ser B 49(9–10):232–235. https://doi.org/10.1134/s1560090407090059

    Article  Google Scholar 

  19. Ping BY et al (2010) Functionalization of chitosan via atom transfer radical polymerization for gene delivery. Adv Funct Mater 20:3106–3116. https://doi.org/10.1002/adfm.201000177

    Article  CAS  Google Scholar 

  20. Patent 6512060 B1 United States, C 08 F 4/40. Atom or group transfer radical polymerization/Matyjaszewski et al.; Inventors: Krzysztof Matyjaszewski; Scott G.—no 09/359,591; filed: 23.07.1999; publ. 28.01.2003

  21. Matyjaszewski K. et al (1998) Processes based on atom (0r group) transfer radical polymerization and novel (c0) polymers having useful structures and properties. Patent 5807937 United States. C 08 F 4/06/Inventors: Krzysztof Matyjaszewski et al.—no 559,309; filed 15.11.1995; publ. 15.09.1998

  22. Yuan W et al (2011) Synthesis of pH- and temperature-responsive chitosan-graft- poly[2-(N, N-dimethylamino)ethyl methacrylate] copolymer and gold nanoparticle stabilization by its micelles. Polym Int 60:194–201. https://doi.org/10.1002/pi.2926

    Article  CAS  Google Scholar 

  23. Yuan W et al (2011) Amphiphilic chitosan graft copolymer via combination of ROP, ATRP and click chemistry: synthesis, self-assembly, thermosensitivity, fluorescence, and controlled drug release. Polymer 52:658–666. https://doi.org/10.1016/j.polymer.2010.12.052

    Article  CAS  Google Scholar 

  24. Bao H et al (2010) Thermo- and pH-responsive association behavior of dual hydrophilic graft chitosan terpolymer synthesized via ATRP and click chemistry. Macromolecules 43:5679–5687. https://doi.org/10.1021/ma100894p

    Article  CAS  Google Scholar 

  25. Bao H, Hu J, Gan LH, Li L (2009) Stepped association of comb-like and stimuli-responsive graft chitosan copolymer synthesized using ATRP and active Ester conjugation methods. J Polym Sci Part A 47(P):6682–6692. https://doi.org/10.1002/pola.23709

    Article  CAS  Google Scholar 

  26. Ifukua S et al (2013) Thermoresponsive chitosan/N-isopropylacrylamide copolymer through atom transfer radical polymerization. Int J Biol Macromol 52:14–19. https://doi.org/10.1016/j.ijbiomac.2012.09.022

    Article  CAS  Google Scholar 

  27. Lindqvist J, Malmstro E (2006) Surface modification of natural substrates by atom transfer radical polymerization. J Appl Polym Sci 100:4155–4162. https://doi.org/10.1002/app.23457

    Article  CAS  Google Scholar 

  28. El Tahlawy K, Hudson SM (2003) Synthesis of a well-defined chitosan graft poly(methoxypolyethyleneglycol methacrylate) by atom transfer radical polymerization. J Appl Polym Sci 89:901–912. https://doi.org/10.1002/app.12001

    Article  CAS  Google Scholar 

  29. Mittal H, Ray SS, Kaith BS, Bhatia JK, Sharma J, SM Alhassan (2018) Recent progress in the structural modification of chitosan for applications in diversified biomedical fields. Eur Polym J 109:402–434. https://doi.org/10.1016/j.eurpolymj.2018.10.013

    Article  CAS  Google Scholar 

  30. Vikhoreva GA, Pchelko OM, Gal’braikh LS, Rogovina SZ (2001) The phase state and rheological properties of chitosan-acetic acid-water system. Polym Sci Ser B 43:166–170

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by Russian Science Foundation Grant No. 16-13-10337.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana S. Dryabina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dryabina, S.S., Fotina, K.M., Shulevich, Y.V. et al. Synthesis of water-soluble grafted chitosan copolymers by atom transfer radical polymerization. Polym. Bull. 77, 1541–1554 (2020). https://doi.org/10.1007/s00289-019-02807-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02807-x

Keywords

Navigation