Skip to main content
Log in

Ultra-fast, economical and room temperature operating ammonia sensor based on polyaniline/iron oxide hybrid nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present work reports a facile, cost-effective, template-free hydrothermal preparative strategy for the synthesis of iron oxides, i.e. α-Fe2O3 (haematite) and Fe3O4 (magnetite) nanoparticles. The polyaniline (PANI) and their iron oxide hybrid nanocomposites (PANI/IO) were prepared by in situ chemical oxidative polymerization method. These PANI/IO nanocomposites were characterized by UV-DRS, FTIR, XRD, SEM techniques and tested for their ammonia sensing properties. The newly synthesized PANI/IO nanocomposites were highly sensitive towards a wide range of concentration of hazardous ammonia (1–400 ppm) at room temperature and possess excellent shelf life. The experimental results revealed that PANI/IO sensor shows ultra-fast response (13–26 s) and recovery (14–25 s) time for 1–100 ppm concentration of ammonia, and thereafter, for higher concentrations (up to 400 ppm) it practically remains constant. The responses of PANI/IO sensors were reproducible over entire range of ammonia concentrations for 10 cycles. The cost-effectiveness, operation simplicity, facile method of synthesis, ultra-fast response and recovery with excellent reproducibility make PANI/IO ammonia sensor commercially attractive than the ammonia sensors reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Narasimhan LR, Goodman W, Patel N (2001) Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis. Proc Natl Acad Sci USA 98:4617–4621

    CAS  PubMed  Google Scholar 

  2. Eom KH, Hyun KH, Lin S, Kim J W (2014) The meat freshness monitoring system using the smart RFID tag. Int J Distrib Sens N ID591812:1–9

  3. Modi A, Koratkar N, Lass E, Wei B, Ajayan PM (2003) Miniaturized gas ionization sensors using carbon nanotubes. Nature 424:171–174

    CAS  PubMed  Google Scholar 

  4. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Kohl D (2001) Function and application of gas sensors. Topical review. J Phys D Appl Phys 34:R125

    Google Scholar 

  5. Ranson M, Cox B, Keenan C, Teitelbaum D (2015) The impact of pollution prevention on toxic environmental releases from U.S. manufacturing facilities. Environ Sci Technol 49(21):12951–12957

    CAS  PubMed  Google Scholar 

  6. Liu S, Ponrathnam T, Sun H, Nagarajan R, Kumar J, Gu Z, Kurup P (2010) Detection of explosive vapors by surface acoustic wave sensors containing novel siloxane based coatings. J Macromol Sci A Pure Appl Chem 47:1172–1175

    CAS  Google Scholar 

  7. Tiwari A (2007) Gum arabic-graft-polyaniline an electrically active redox biomaterial for sensor applications. J Macromol Sci A Pure Appl Chem 44:735–745

    CAS  Google Scholar 

  8. Chabukswar VV, Pethkar S, Athawale AA (2001) Acrylic acid doped polyaniline as an ammonia sensor. Sens Actuators B 77:657–663

    CAS  Google Scholar 

  9. Brabec CJ, Sariciftci NS, Hummelen JC (2001) Plastic solar cells. Adv Funct Mater 11:15–26

    CAS  Google Scholar 

  10. Athawale AA, Kulkarni MV, Chabukswar VV (2002) Studies on chemically synthesized soluble acrylic acid doped polyaniline. Mater Chem Phys 73:106–110

    CAS  Google Scholar 

  11. Nicolas-Debarnot D, Poncin-Epaillard F (2003) Polyaniline as a new sensitive layer for gas sensors. Anal Chim Acta 475:1–15

    CAS  Google Scholar 

  12. Das TK, Prusty S (2012) Review on conducting polymers and their applications. Polym Plast Technol Eng 51:1487–1500

    CAS  Google Scholar 

  13. Tsumura A, Koezuka H, Ando T (1988) Polythiophene field-effect transistor: its characteristics and operation mechanism. Synth Met 25:11–23

    CAS  Google Scholar 

  14. Penza M, Milella E, Musion F, Alba MB, Cassano G, Quirini A (1998) AC and DC measurements on Langmuir-Blodgett polypyrrole films for selective NH3 gas detection. Mater Sci Eng C 5:255–258

    Google Scholar 

  15. Radhakrishnan S, Prakash S, Rao CRK, Vijayan M (2009) Organically soluble bi functional polyaniline–magnetite composites for sensing and super capacitor applications. Electrochem Solid-State Lett 12:A84–A87

    CAS  Google Scholar 

  16. Liu A, Bac LH, Kim J-C, Liu L (2012) Preparation and characterization of polyaniline-copper composites by electrical explosion of wire. J Nanosci Nanotechnol 12:6031–6035

    CAS  PubMed  Google Scholar 

  17. Li D, Huang J, Kaner RB (2009) Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res 42:135–145

    CAS  PubMed  Google Scholar 

  18. Abu-Thabit NY (2016) Chemical oxidative polymerization of polyaniline: a practical approach for preparation of smart conductive textiles. J Chem Educ 93(9):1606–1611

    CAS  Google Scholar 

  19. Cuentas-Gallegos AK, Lira-Cantu M, Casan-Pastor N, Gomez Romero P (2005) Nanocomposite hybrid materials for application in solid-state electrochemical super capacitors. Adv Funct Mater 15:1125–1135

    CAS  Google Scholar 

  20. Sen T, Mishra S, Shimpi NG (2016) Synthesis and sensing applications of polyaniline nanocomposites: a review. RSC Adv 6:42196–42222

    CAS  Google Scholar 

  21. Solonaru M, Grigoras M (2017) Water-soluble polyaniline/graphene composites as materials for energy storage applications. Express Polym Lett 11:127–139

    CAS  Google Scholar 

  22. Mallakpour S, Behranvand V (2016) Polymeric nanoparticles: recent development in synthesis and application. Express Polym Lett 10:895–913

    CAS  Google Scholar 

  23. Xu CN, Miura N, Ishida Y, Matuda K, Yamazoe N (2000) Selective detection of NH3 over NO in combustion exhausts by using Au and MoO3 doubly promoted WO3 element. Sens Actuators B 65:163–165

    CAS  Google Scholar 

  24. Yogitsoy B, Varis S, Tanyeli C, Akhmedov I, Toppare LA (2007) Soluble conducting polymer of 2,5-di(thiophen-2-yl)-1-p-tolyl-1H-pyrrole and its electro chromic device. Thin Solid Films 515:3898–3904

    Google Scholar 

  25. Agrawalla RK, Meriga V, Paul R, Chakraborty AK, Mitra AK (2016) Solvothermal synthesis of a polyaniline nanocomposite—a prospective biosensor electrode material. Express Polym Lett 10:780–787

    CAS  Google Scholar 

  26. Khademian M, Eisazadeh H, Shakeri A, Ghorbani M (2015) Effect of HPC-PANI/SiO2 emulsion nanocomposite in poly (vinyl acetate) for corrosion-resistant coatings. Polym Plast Technol Eng 54:1051–1056

    CAS  Google Scholar 

  27. Gizdavic-Nikolaidis MR, Jevremovic MM, Allison MC, Stanisavljev DR, Bowmaker GA, Zujovic ZD (2014) Self-assembly of nanostructures obtained in a microwave-assisted oxidative polymerization of aniline. Express Polym Lett 8:745–755

    Google Scholar 

  28. Sarmento VHV, Schiavetto MG, Hammer P, Benedetti AV, Fugivara CS, Suegama PH, Pulcinelli SH, Santilli CV (2010) Corrosion protection of stainless steel by poly-siloxane hybrid coatings prepared using the sol–gel process. Surf Coat Technol 204:2689–2701

    CAS  Google Scholar 

  29. Rahmanzadeh L, Ghorbani M, Jahanshahi M (2014) Synthesis and characterization of Fe3O4@Polyrhodanine nanocomposite with core–shell morphology. Adv Polym Technol 33(S1):21463

    Google Scholar 

  30. Sharma BK, Gupta AK, Khare N, Dhawan S, Gupta H (2009) Synthesis and characterization of polyaniline–ZnO composite and its dielectric behaviour. Synth Met 159:391–395

    CAS  Google Scholar 

  31. Xiao Q, Tan X, Ji L, Xue J (2007) Preparation and characterization of polyaniline/nano-Fe3O4 composites via a novel Pickering emulsion route. Synth Met 157:784–791

    CAS  Google Scholar 

  32. Sim B, Chae HS, Choi HJ (2015) Fabrication of polyaniline coated iron oxide hybrid particles and their dual stimuli-response under electric and magnetic fields. Express Polym Lett 9:736–743

    CAS  Google Scholar 

  33. Li R, Jiang K, Chen S, Lou Z, Huang T, Chen D, Shen G (2017) SnO2/SnS2 nanotubes for flexible room temperature NH3 gas sensors. RSC Adv 7:52503–52509

    CAS  Google Scholar 

  34. Bandgar DK, Navale ST, Nalage SR, Mane RS, Stadler FJ, Aswal DK, Gupta SK, Patil VB (2015) Simple and low-temperature polyaniline-based flexible ammonia sensor: a step towards laboratory synthesis to economical device design. J Mater Chem C 3:9461–9468

    CAS  Google Scholar 

  35. Tai H, Jiang Y, Xie G, Yu J (2010) Preparation, Characterization and comparative NH3-sensing characteristic studies of PANI/inorganic oxides nanocomposite thin films. J Mater Sci Technol 26(7):605–613

    CAS  Google Scholar 

  36. Zhang Z, Wan M (2003) Nano structure of polyaniline composites containing nano-magnet. Nanostruct Synth Met 132:205–221

    CAS  Google Scholar 

  37. Das M, Sarkar D (2017) Development of room temperature ethanol sensor from polypyrrole (PPy) embedded in polyvinyl alcohol (PVA) matrix. Polym Bull 75:3109. https://doi.org/10.1007/s00289-017-2192-y

    Article  CAS  Google Scholar 

  38. Kumar L, Rawal I, Kaur A, Annapoorni S (2017) Flexible room temperature ammonia sensor based on polyaniline. Sens Actuators B 240:408–416

    CAS  Google Scholar 

  39. Ghosh R, Nayak A, Santra S, Pradhan D, Guha P (2015) Enhanced ammonia sensing at room temperature with reduced graphene oxide/tin oxide hybrid film. RSC Adv 5:50165–50173

    CAS  Google Scholar 

  40. Yadav AA, Kulkarni SB, Lokhande CD (2018) Synthesis and characterization of polypyrrole thin film by MW-CBD method for NH3 gas sensor. Polym Bull 75:4547. https://doi.org/10.1007/s00289-018-2282-5

    Article  CAS  Google Scholar 

  41. Yoo KP, Kwon KH, Min NK, Lee MJ, Lee CJ (2009) Effects of O2 plasma treatment on NH3 sensing characteristics of multiwall carbon nanotube/polyaniline composite films. Sens Actuators B 143:333–340

    Google Scholar 

  42. Wu Y, Xing S, Jinga S, Zhoua T, Zhao C (2007) Examining the use of Fe3O4 nanoparticles to enhance the NH3 sensitivity of polypyrrole films. Polym Bull 59:227–234

    Google Scholar 

  43. Crowley K, Morrin A, Hernandez A, O’Malley E, Whitten PG, Wallace GG, Smyth MR, Killard S (2008) Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles. Talanta 77:710–717

    CAS  Google Scholar 

  44. Bhadra S, Singha NK, Khastgir D (2007) Electrochemical synthesis of polyaniline and its comparison with chemically synthesized polyaniline. J Appl Polym Sci 104:1900–1904

    CAS  Google Scholar 

  45. Sengupta PP, Kar P, Adhikari B (2009) Influence of dopant in the synthesis, characteristics and ammonia sensing behavior of process able polyaniline. Thin Solid Films 517:3770–3775

    CAS  Google Scholar 

  46. Pandule SS, Patil MR, Keri RS (2017) Properties and ammonia gas sensing applications of different inorganic acid-doped poly (2-chloroanilines). Polym Bull 75:4469. https://doi.org/10.1007/s00289-017-2263-0

    Article  CAS  Google Scholar 

  47. Guo C, Kondo Y, Takaia C, Fujia M (2016) Piezo resistivities of vapor-grown carbon fiber/silicone foams for tactile sensor applications. Polym Int 66:418. https://doi.org/10.1002/pi.5275

    Article  CAS  Google Scholar 

  48. Hong L, Li Y, Yang M (2010) Fabrication and ammonia gas sensing of palladium/polypyrrole nanocomposite. Sens Actuators B Chem 145:25–31

    CAS  Google Scholar 

  49. Wu Z, Chen X, Zhu S, Zhou Z, Yao Y, Quan W, Liu B (2013) Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens Actuators B Chem 178:485–493

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the UGC and Savitribai Phule Pune University, Pune, India, for technical and financial support. They are also thankful to the N. Wadia College, Pune and BJS’S ASC College, Wagholi, Pune, India, for providing laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Chabukswar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chabukswar, V.V., Bora, M.A., Adhav, P.B. et al. Ultra-fast, economical and room temperature operating ammonia sensor based on polyaniline/iron oxide hybrid nanocomposites. Polym. Bull. 76, 6153–6167 (2019). https://doi.org/10.1007/s00289-019-02703-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02703-4

Keywords

Navigation