Skip to main content
Log in

Shelf-life of polyfurfuryl alcohol resin: an accelerated rheokinetics study

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Thermosetting resins like polyfurfuryl alcohol (PFA) tend to get prematurely cured and viscous during storage. Understanding a resin shelf-life is very helpful but no definite and validated method could be found in both scientific literature and standard methods. Cure kinetics of PFA was determined through tracing the complex viscosity changes as a function of time at elevated temperatures of 160, 170, 180, 190 and 200 °C. Adopting an empirical statistical approach, shelf-life of PFA resin at ambient temperature was estimated using the accelerated cure profiles. To this end, two functions were fitted on experimental results and then the empirical cure reaction rate constants at different temperatures were extrapolated to 25 °C. Subsequently, the viscosity versus time profiles were built for curing the resin at ambient temperature. The time interval corresponding to a viscosity range of 10–12.5 Pa.s was considered as the practical shelf-life of the resin at ambient conditions. The findings were validated by comparing the model results to the real-time, experimentally-obtained values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kutz M (2015) Mechanical engineers’ handbook, vol 1: materials and engineering mechanics, 4th edn. Wiley, London

    Google Scholar 

  2. Mital A, Desai A, Subramanian A, Mital A (2014) Product development: a structured approach to consumer product development, design, and manufacture, 2nd edn. Butterworth-Heinemann, London

    Google Scholar 

  3. Dodiuk H, Goodman SH (2013) Handbook of thermoset plastics, 3rd edn. Elsevier Science, Amsterdam

    Google Scholar 

  4. NPCS Board of Consultants and Engineers (2014) Disposable products manufacturing handbook. NIIR Project Consultancy Services

  5. Whelan T, Goff J (2012) Molding of thermosetting plastics. Springer, London

    Google Scholar 

  6. Pascault JP, Sautereau H, Verdu J, Williams RJJ (2002) Thermosetting polymers. CRC Press, Amsterdam

    Book  Google Scholar 

  7. De Miranda LF, Vale M, Júnior AHM, Masson TJ, e Silva LGDA (2016) Zinc chloride influence on the resins furan polymerization to foundry moulds. In: Ikhmayies SJ et al (eds) Characterization of minerals, metals, and materials. Springer, London, pp 771–778

    Google Scholar 

  8. Wang Z, Cao N, He J, Du R, Liu Y, Zhao G (2017) Mechanical and anticorrosion properties of furan/epoxy-based basalt fiber-reinforced composites. J Appl Polym Sci 134:44799. https://doi.org/10.1002/app.44799

    Article  CAS  Google Scholar 

  9. Balasubramanian M (2017) Composite materials and processing. CRC Press, Amsterdam

    Google Scholar 

  10. Astrom BT (1997) Manufacturing of polymer composites. CRC Press, Amsterdam

    Google Scholar 

  11. Berins M (1991) SPI plastics engineering handbook of the society of the plastics industry. Springer, USA

    Book  Google Scholar 

  12. Harper CA, Petrie EM (2008) Plastics materials and processes: a concise encyclopedia. Wiley, London

    Google Scholar 

  13. Halley PJ, Mackay ME (1996) Chemorheology of thermosets-an overview. Polym Eng Sci 36:593–609. https://doi.org/10.1002/pen.10447

    Article  CAS  Google Scholar 

  14. Woo L, Palomo J, Ling MTK, Chan EK, Sandford C (1996) Shelf-life prediction methods and applications. Med Plast Biomater 3:36–40

    Google Scholar 

  15. Smith HM (1981) Shelf life determination of an epoxy resin by accelerated aging. Final report. Bendix Corp, Kansas City

    Google Scholar 

  16. Zarrelli M, Skordos AA, Partridge IK (2010) Toward a constitutive model for cure-dependent modulus of a high temperature epoxy during the cure. Eur Polym J 46:1705–1712. https://doi.org/10.1016/j.eurpolymj.2010.06.002

    Article  CAS  Google Scholar 

  17. Marefat Seyedlar R, Imani M, Mirabedini SM (2016) Curing of poly(furfuryl alcohol) resin catalyzed by a homologous series of dicarboxylic acid catalysts: kinetics and pot life. J Appl Polym Sci 133:44009. https://doi.org/10.1002/APP.44009

    Article  Google Scholar 

  18. Christodoulides C, Christodoulides G (2017) Analysis and presentation of experimental results. Springer, London

    Book  Google Scholar 

  19. Hsich HSY (1978) A unified theory for studying chemical relaxation by using light scattering or ultrasonic absorption experiments. J Mater Sci 13:2560–2568. https://doi.org/10.1007/BF02402742

    Article  CAS  Google Scholar 

  20. Hsich HSY (1980) Physical and thermodynamic aspects of the glassy state, and intrinsic non-linear behaviour of creep and stress relaxation. J Mater Sci 15:1194–1206. https://doi.org/10.1007/BF00551809

    Article  CAS  Google Scholar 

  21. Hsich HSY, Yanyo LC, Ambrose RJ (1984) A relaxation model for property changes during the cure reaction of filled and unfilled silicone elastomers. J Appl Polym Sci 29:2331–2345. https://doi.org/10.1002/app.1984.070290709

    Article  CAS  Google Scholar 

  22. Maciel GE, Chuang IS, Gollob L (1984) Solid-state carbon-13 NMR study of resol-type phenol-formaldehyde resins. Macromol 17:1081–1087. https://doi.org/10.1021/ma00135a018

    Article  CAS  Google Scholar 

  23. Diels O, Alder K (1931) Synthesen in der hydroaromatischen Reihe. XII. Mitteilung. (“Dien-Synthesen” sauerstoffhaltiger Heteroringe. 2. Dien-Synthesen des Furans.). Justus Liebigs Ann Chem 490:243–257. https://doi.org/10.1002/jlac.19314900110

    Article  Google Scholar 

  24. Eggelte TA, de Koning H, Huisman HO (1973) Diels-Alder reaction of furan with some dienophiles. Tetrahedron 29:2491–2493. https://doi.org/10.1016/S0040-4020(01)93382-4

    Article  CAS  Google Scholar 

  25. Berson JA, Swidler R (1953) The stereochemistry of the Furan–Maleic acid reaction. J Am Chem Soc 75:1721–1726. https://doi.org/10.1021/ja01103a060

    Article  CAS  Google Scholar 

  26. Choura M, Belgacem NM, Gandini A (1996) Acid-catalyzed polycondensation of furfuryl alcohol: mechanisms of chromophore formation and cross-linking. Macromol 29:3839–3850. https://doi.org/10.1021/ma951522f

    Article  CAS  Google Scholar 

  27. Domínguez JC, Grivel JC, Madsen B (2012) Study on the non-isothermal curing kinetics of a polyfurfuryl alcohol bioresin by DSC using different amounts of catalyst. Thermochim Acta 529:29–35. https://doi.org/10.1016/j.tca.2011.11.018

    Article  CAS  Google Scholar 

  28. Zarrelli M, Partridge IK, D’Amore A (2006) Warpage induced in bi-material specimens: coefficient of thermal expansion, chemical shrinkage and viscoelastic modulus evolution during cure. Compos Part A: Appl Sci Manuf 37:565–570. https://doi.org/10.1016/j.compositesa.2005.05.012

    Article  CAS  Google Scholar 

  29. Zarrelli M, Skordos AA, Partridge IK (2008) Thermomechanical analysis of a toughened thermosetting system. Mech Compos Mater 44:181–190. https://doi.org/10.1007/s11029-008-9009-x

    Article  CAS  Google Scholar 

  30. Zhao L, Hu X (2007) A variable reaction order model for prediction of curing kinetics of thermosetting polymers. Polymer 48:6125–6133. https://doi.org/10.1016/j.polymer.2007.07.067

    Article  CAS  Google Scholar 

  31. Guigo N, Mija A, Vincent L, Sbirrazzuoli N (2007) Chemorheological analysis and model-free kinetics of acid catalysed furfuryl alcohol polymerization. Phys Chem Chem Phys 9:5359–5366. https://doi.org/10.1039/B707950H

    Article  CAS  PubMed  Google Scholar 

  32. Dominguez JC, Alonso MV, Oliet M, Rodríguez F (2010) Chemorheological study of the curing kinetics of a phenolic resol resin gelled. Eur Polym J 46:50–57. https://doi.org/10.1016/j.eurpolymj.2009.09.004

    Article  CAS  Google Scholar 

  33. Dominguez JC, Madsen B (2014) Chemorheological study of a polyfurfuryl alcohol resin system—pre-gel curing stage. Ind Crops Prod 52:321–328. https://doi.org/10.1016/j.indcrop.2013.11.006

    Article  CAS  Google Scholar 

  34. Yang Y, Suspene L (1991) Curing of unsaturated polyester resins: viscosity studies and simulations in pre-gel state. Polym Eng Sci 31:321–332. https://doi.org/10.1002/pen.760310505

    Article  CAS  Google Scholar 

  35. Castro JM, Macosko CW (1982) Studies of mold filling and curing in the reaction injection molding process. AIChE J 28:250–260. https://doi.org/10.1002/aic.690280213

    Article  CAS  Google Scholar 

  36. Kamal MR (1974) Thermoset characterization for moldability analysis. Polym Eng Sci 14:231–239. https://doi.org/10.1002/pen.760140312

    Article  Google Scholar 

  37. Hale A, Garcia M, Macosko CW, Manzione LT (1989) Spiral flow modelling of a filled Epoxy–Novolac molding compound. In: ANTEC’89 Plastics Create a World of Difference, pp 796–799

  38. Chiou PL, Letton A (1992) Modelling the chemorheology of an epoxy resin system exhibiting complex curing behaviour. Polymer 33:3925–3931. https://doi.org/10.1016/0032-3861(92)90384-9

    Article  CAS  Google Scholar 

  39. Dusi MR, May CA, Seferis JC (1983) Chemorheology of thermosetting polymers. ACS Symp Ser 301:1983

    Google Scholar 

  40. Montgomery DC, Peck EA, Vining GG (2012) Introduction to linear regression analysis. Wiley, London

    Google Scholar 

  41. Freund RJ, Wilson WJ, Sa P (2006) Regression analysis. Elsevier, Amsterdam

    Google Scholar 

  42. Rhinehart RR (2016) Nonlinear regression modeling for engineering applications: modeling, model validation, and enabling design of experiments. Wiley, London

    Book  Google Scholar 

  43. Rao RV (2010) Advanced modeling and optimization of manufacturing processes: international research and development. Springer, London

    Google Scholar 

Download references

Acknowledgement

Hereby, we express our sincere gratitude to Iran Polymer and Petrochemical Institute for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Imani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behzadfar, A., Imani, M. & Farahmandghavi, F. Shelf-life of polyfurfuryl alcohol resin: an accelerated rheokinetics study. Polym. Bull. 76, 5903–5918 (2019). https://doi.org/10.1007/s00289-019-02692-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02692-4

Keywords

Navigation