Skip to main content
Log in

Rheological and thermal characterization of PCL/PBAT blends

  • Review
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The development of biodegradable blends is an important option for reducing environmental impacts generated by the use of plastics, besides increasing the knowledge biodegradable polymers and its associations. In this contribution, rheological and thermal characteristics of neat PCL and PBAT and PCL/PBAT blends melt mixed in an internal laboratory mixer were evaluated. The results suggested that the blends are immiscible but there is a strong interaction between the components. Crystallization kinetics can be represented by Pseudo-Avrami model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Elias H-G, Mülhaupt R (2016) Plastics, general survey. In: Elvers B (ed) Ullmann’s polymers and plastics. Wiley-VCH, Weinheim, pp 1–229

    Google Scholar 

  2. Okada M (2002) Chemical syntheses of biodegradable polymers. Prog Polym Sci 27:87–133

    Article  CAS  Google Scholar 

  3. Bastioli C (2014) Handbook of biodegradable polymers, 2nd edn. Smithers/Rapra Technology, Shawbury

    Google Scholar 

  4. Lendlein A, Sisson A (2011) Handbook of biodegradable polymers. Synthesis, characterization and applications. Wiley/VCH, Weinheim

    Book  Google Scholar 

  5. Karlsson S, Albertsson A-C (1998) Biodegradable polymers and environmental interaction. Polym Eng Sci 38:1251–1253

    Article  CAS  Google Scholar 

  6. Labet M, Thielemans W (2009) Synthesis of polycaprolactone: a review. Chem Soc Rev 38:3484–3504

    Article  CAS  PubMed  Google Scholar 

  7. Wu CS (2010) Preparation and characterizations of polycaprolactone/green coconut fiber composites. J Appl Polym Sci 115:948–956

    Article  CAS  Google Scholar 

  8. Averous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci C Polym Rev 44:231–274

    Article  CAS  Google Scholar 

  9. Yamamoto M, Witt U, Skupin G, Beimborn D, Müller RJ (2002) Biodegradable aliphatic-aromatic aolyesters:“Ecoflex®”. In: Steinbüchel A, Doi A (eds) Biopolymers, volume 4: polyesters III—applications and commercial products. Wiley-Blackwell, New York, p 299

    Google Scholar 

  10. França DC, Almeida TG, Abels G, Canedo EL, Carvalho LH, Wellen RMR, Haag K, Koschek K (2018) Tailoring PBAT/PLA/Babassu films for suitability of agriculture mulch application. J Nat Fibers. https://doi.org/10.1080/15440478.2018.1441092

    Article  Google Scholar 

  11. Correa AC, Carmona VB, Simão JA, Mattoso LHC, Marconcini JM (2017) Biodegradable blends of urea plasticized thermoplastic starch (UTPS) and poly(ε-caprolactone) (PCL): morphological, rheological, thermal and mechanical properties. Carbohydr Polym 167:177–184

    Article  CAS  PubMed  Google Scholar 

  12. Patrício T, Bártolo P (2013) Thermal stability of PCL/PLA blends produced by physical blending process. Procedia Eng 59:292–297

    Article  CAS  Google Scholar 

  13. Canedo EL, Alves TS (2015) Processamento de Polímeros no Misturador Interno de Laboratório. Workshop CFD/UFCG, Campina Grande. https://doi.org/10.13140/RG.2.1.1892.5921

    Book  Google Scholar 

  14. Alves TS, Silva Neto JE, Silva SML, Carvalho LH, Canedo EL (2016) Process simulation of laboratory internal mixers. Polym Test 50:94–100

    Article  CAS  Google Scholar 

  15. Costa ARM, Almeida TG, Silva SML, Carvalho LH, Canedo EL (2015) Chain extension in poly(butylene-adipate-terephthalate). Inline analysis in a laboratory internal mixer. Polym Test 42:115–121

    Article  CAS  Google Scholar 

  16. Duarte IS, Tavares AA, Lima PS, Andrade DLACS, Carvalho LH, Canedo EL, Silva SML (2016) Chain extension of virgin and recycled poly(ethylene terephthalate): effect of processing conditions and reprocessing. Polym Degrad Stab 124:26–34

    Article  CAS  Google Scholar 

  17. Tavares AA, Silva DFA, Lima PS, Andrade DLACS, Silva SML, Canedo EL (2016) Chain extension of virgin and recycled polyethylene terephthalate. Polym Test 50:26–32

    Article  CAS  Google Scholar 

  18. Almeida TG, Silva Neto JE, Costa ARM, Silva AS, Carvalho LH, Canedo EL (2016) Degradation during processing in poly(butylene adipate-co-terephthalate)/vegetable fiber compounds estimated by torque rheometry. Polym Test 55:204–211

    Article  CAS  Google Scholar 

  19. Marinho VAD, Pereira CAB, Vitorino MBC, Silva AS, Carvalho LH, Canedo EL (2017) Degradation and recovery in poly(butylene adipate-co-terephthalate)/thermoplastic starch blends. Polym Test 58:166–172

    Article  CAS  Google Scholar 

  20. Lima PS, Brito RSF, Santos BFF, Tavares AA, Agrawal P, Andrade DLACS, Wellen RMR, Canedo EL, Silva SML (2017) Rheological properties of HDPE/chitosan composites modified with PE-g-MA. J Mater Res 32:775–787

    Article  CAS  Google Scholar 

  21. Falcão GAM, Vitorino MBC, Almeida TG, Bardi MAG, Carvalho LH, Canedo EL (2017) PBAT/organoclay composite films: preparation and properties. Polym Bull 74:4423–4436

    Article  CAS  Google Scholar 

  22. Canedo EL, Wellen RMR, Almeida YMB (2016) Cristalização de Polímeros: Tratamento de Dados e Modelagem Macrocinética. ANP – PRH28/UFPE, Recife

    Google Scholar 

  23. Wellen RMR, Canedo EL (2014) On the Kissinger equation and the estimate of activation energies for non-isothermal cold crystallization of PET. Polym Test 40:33–38

    Article  CAS  Google Scholar 

  24. Wellen RMR, Canedo EL (2015) Complex cold crystallization peaks in PET/PS blends. Polym Test 41:26–32

    Article  CAS  Google Scholar 

  25. Wellen RMR, Canedo EL, Lima CAV, Almeida YMB, Rabello MS (2015) The effect of polystyrene on the crystallization of poly(3-hydroxybutyrate). Mater Res 18:235–239

    Article  CAS  Google Scholar 

  26. Wellen RMR, Rabello MS, Fechine GJM, Canedo EL (2015) Melting and crystallization of poly(3-hydroxybutyrate). Effect of heating/cooling rates on phase transformation. Polímeros 25:296–304

    Article  Google Scholar 

  27. Wellen RMR, Canedo EL, Rabello MS (2015) Melting and crystallization of PHB/carbon black compounds. Effect of heating and cooling cycles on phase transition. J Mater Res 30:3211–3226

    Article  CAS  Google Scholar 

  28. Sousa JC, Carvalho LH, Almeida YMB, Canedo EL (2016) Crystallization and melting of poly (butylene adipate terephtalate) in biocomposites with coconut fiber. In: 3rd Brazilian conference on composite materials (BCCM3), Gramado, RS

  29. Lima RG Jr, Arruda SA, Wellen RMR, Carvalho LH, Canedo EL, Almeida YMB (2016) Nonisothermal melt crystallization in poly (ethylene terephthalate)/zinc oxide compounds. In: 3rd Brazilian conference on composite materials (BCCM3), Gramado, RS

  30. Wellen RMR, Canedo EL (2016) Nonisothermal melt and cold crystallization kinetics of PHB and PHB/CB compounds. Evaluation of Pseudo-Avrami, Ozawa, and Mo models. J Mater Res 31:729–739

    Article  CAS  Google Scholar 

  31. Ries A, Canedo EL, Monteiro AEG, Almeida YMB, Wellen RMR (2016) Model-free non-isothermal crystallization kinetics of poly(3-hydoxybutyrate) filled with carbon black. Polym Test 50:241–246

    Article  CAS  Google Scholar 

  32. Ries A, Canedo EL, Wellen RMR (2016) Non-isothermal cold crystallization kinetics of poly(3-hydoxybutyrate) filled with zinc oxide. Thermochim Acta 637:74–81

    Article  CAS  Google Scholar 

  33. Vitorino MBC, Cipriano PB, Wellen RMR, Canedo EL, Carvalho LH (2016) Nonisothermal crystallization of poly(β-hydroxybutyrate)/babassu eco-composites. Kinetics of crystallization. J Therm Anal Calorim 126:755–769

    Article  CAS  Google Scholar 

  34. Silva IDS, Jaques NG, Barbosa Neto MC, Agrawal P, Ries A, Wellen RMR, Canedo EL (2017) Melting and crystallization of PBT/ZnO compounds. Effect of heating and cooling cycles on phase transition. J Therm Anal Calorim. https://doi.org/10.1007/s10973-017-6749-7

    Article  Google Scholar 

  35. Jaques NG, Silva IDS, Ries A, Canedo EL, Wellen RMR (2017) Nonisothermal crystallization studies of PBT/ZnO compounds. Ozawa and Mo models. J Therm Anal Calorim. https://doi.org/10.1007/s10973-017-6754-x

    Article  Google Scholar 

  36. Jaques NG, Silva IDS, Diniz RKM, Wellen RMR, Canedo EL (2017) Comparative study of the effect of TiO2 and ZnO on the crystallization of PHB. Materia. https://doi.org/10.1590/S1517-707620170004.0214

    Article  Google Scholar 

  37. Jaques NG, Silva IDS, Barbosa Neto MC, Ries A, Wellen RMR, Canedo EL (2018) Effect of heat cycling on melting and crystallization of PBT/TiO2 compounds. Polímeros. https://doi.org/10.1590/0104-1428.12416

    Article  Google Scholar 

  38. Costa ARM, Ito EN, Cavalho LH, Canedo EL (2018) Non-isothermal melt crystallization kinetics of poly(3-hydroxybutyrate), poly(butylene adipate-co-terphthalate) and its mixture. Polímeros, in press

  39. Mandelkern L, Alamo R (2007) Thermodynamic quantities governing melting. In: Mark JE (ed) Physical properties of polymers handbook, 2nd edn. Springer, Berlin, pp 165–186

    Chapter  Google Scholar 

  40. Herrera R, Franco L, Rodriguez-Galán A, Puiggalí J (2002) Characterization and degradation behavior of poly(butylene adipate-co-terephthalate)s. J Polym Sci A Polym Chem 40:4141–4157

    Article  CAS  Google Scholar 

  41. Piorkowska E, Rutledge GC (2013) Handbook of polymer crystallization. Wiley, Hoboken

    Book  Google Scholar 

  42. Vyazovkin S (2015) Isoconversional kinetics of thermally stimulated processes. Springer, Cham

    Book  Google Scholar 

  43. Schultz JM (2001) Polymer crystallization—the development of crystalline order in thermoplastic polymers. American Chemical Society, Oxford University Press, Washington

    Google Scholar 

  44. Kamal MR, Utracki LA, Mirzadeh A (2014) Rheology of polymer blends and alloys. In: Utracki LA, Wilkie CA (eds) Polymer blends handbook, 2nd edn. Springer, Heidelberg, pp 725–874

    Google Scholar 

  45. Tabor D (1991) Gases, liquids, solids and other states of matter, 3rd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  46. Elias HG (1993) An introduction to plastics. Wiley-VCH, Weinheim

    Google Scholar 

Download references

Acknowledgements

The authors thank BASF Brasil for supplying Ecoflex® polymer, and to the CAPES and CNPq for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiara G. Almeida.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, F.M., Costa, A.R.M., Reul, L.T.A. et al. Rheological and thermal characterization of PCL/PBAT blends. Polym. Bull. 76, 1573–1593 (2019). https://doi.org/10.1007/s00289-018-2428-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2428-5

Keywords

Navigation