Skip to main content
Log in

Radiation-induced nucleation and pH-controlled nanostructure shape of polyaniline dispersed in DMF

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Different nanostructure shapes of polyaniline (PAni) particles such as rod and spherical shapes were prepared using gamma radiation. Gamma radiation is advantageous over other conventional methods because it provides a pure nanoparticle without by-products or any additives. The four solutions of aniline monomer Ani were dissolved in aprotic polar solvent N,N-dimethyl formamide (DMF) in different pH values and exposed to gamma radiation at a dosage of 50 kGy. The pH effect in terms of size and structure of PAni was investigated with four values 1, 5, 8 and 13 adjusted by adding HCl. A common polymerization mechanism induced by radiation is proposed as a radical cation polymerization, which is an environment friendly and cost effective mechanism without any side products or contaminants. The size and size distribution of PAni NPs suspension in DMF solvent were investigated by TEM and DLS. The results clearly showed that the ionizing radiation is an effective tool to produce a shape-controllable size. The changes of the spectrum with the pH of the polymerization solution obtained from UV–visible spectroscopy revealed that the smallest particles of PAni NPs can easily be obtained at low pH. The PAni particles are obtained with two morphologies (such as rod and spherical shapes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ghobashy MM and Khafaga MR (2016) J Polym Environ. https://doi.org/10.1007/s10924-016-0805-4

    Article  Google Scholar 

  2. Abdel-Fattah AA, Soliman YS, Ghobashy MM (2018) J Polym Res 25: 106

  3. Dole M (ed) (2013) The radiation chemistry of macromolecules, vol 2. Elsevier, Amsterdam

    Google Scholar 

  4. Ghobashy MM, Younis SA, Elhady MA, Serp P (2018) Radiation induced in situ cationic polymerization of polystyrene organogel for selective absorption of chlorophenols from petrochemical wastewater. J Environ Manag 210:307–315

    Article  CAS  Google Scholar 

  5. Ghobashy MM (2018) Ionizing radiation-induced polymerization. Ion Radiat Effects Appl. InTech, London, UK

    Google Scholar 

  6. Ghobashy MM, Younis SA, Elhady MA, Serp P (2018) Radiation induced in situ cationic polymerization of polystyrene organogel for selective absorption of cholorophenols from petrochemical wastewater. J Environ Manag 210:307–315

    Article  CAS  Google Scholar 

  7. Rosiak JM (2004) Radiation polymerization in solution in: IAEA-TECDOC-1420 advances in radiation chemistry of polymers. In: Proceedings of a technical meeting held in Notre Dame, Indiana, USA 13–17 September 2003. International Atomic Energy Agency. Vienna, Austria, 2004

  8. Gospodinova N, Terlemezyan L (1998) Conducting polymers prepared by oxidative polymerization: polyaniline. Prog Polym Sci 23(8):1443–1484

    Article  CAS  Google Scholar 

  9. Sapurina Irina, Stejskal Jaroslav (2008) The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym Int 57(12):1295–1325

    Article  CAS  Google Scholar 

  10. Higashimura H, Kobayashi S (2004) Encyclopedia of polymer science and technology. In: Kroschwitz JI (ed) Oxidative polymerization,3 rol ed, vol 10. Wiley, New York

    Google Scholar 

  11. Chiang CK, Druy MA, Gau SC, Heeger AJ, Louis EJ, Alan G, MacDiarmid AG, Park Y, Shirakawa H (1978) Synthesis of highly conducting films of derivatives of polyacetylene,(CH) x. J Am Chem Soc 100(3):1013–1015

    Article  CAS  Google Scholar 

  12. Jotiram KP, Prasad RGSV, Jakka VS, Aparna RSL, Phani AR (2012) Antibacterial activity of nanostructured polyaniline combined with mupirocin. Nano Biomed Eng 4(3):144–149

    Article  CAS  Google Scholar 

  13. Feast WJ, Tsibouklis J, Pouwer KL, Groenendaal L, Meijer EW (1996) Synthesis, processing and material properties of conjugated polymers. Polymer 37(22):5017

    Article  CAS  Google Scholar 

  14. Wang B, Tang J, Wang F (1987) Electrochemical polymerization of aniline. Synth Met 18(1):323–328

    Article  CAS  Google Scholar 

  15. Stevens Malcolm P (1999) Polymer Chemistry: an Introduction. Oxford University Press, New York

    Google Scholar 

  16. Gospodinova N, Terlemezyan L (1998) Conducting polymers prepared by oxidative polymerization: polyaniline. Prog Polym Sci 23(8):1443–1484

    Article  CAS  Google Scholar 

  17. Gospodinova N, Mokreva P, Terlemezyan L (1995) Oxidative polymerization of aniline: a new area in cationic polymerization. Polymer 36(18):3585–3587

    Article  CAS  Google Scholar 

  18. Ghobashy MM, Khafaga MR (2016) Radiation synthesis and magnetic property investigations of the graft copolymer poly (Ethylene-g-Acrylic Acid)/Fe3O4 Film. J Supercond Novel Magn 30(2):401–406

    Article  Google Scholar 

  19. Ghobashy MM and Abdeen ZI (2016) Radiation crosslinking of polyurethanes: characterization by FTIR, TGA, SEM, XRD, and Raman spectroscopy. J Polym 2016:9802514-1–9802514-9. https://doi.org/10.1155/2016/9802514

    Article  Google Scholar 

  20. Ghobashy Mohamed Mohamady (2017) Combined ultrasonic and gamma-irradiation to prepare TiO2@ PET-g-PAAc fabric composite for self-cleaning application. Ultrason Sonochem 37:529–535

    Article  CAS  Google Scholar 

  21. Ghobashy MM, Abdel Reheem AM, Mazied NA (2017) Ion etching induced surface patterns of blend polymer (poly ethylene glycol–poly methyl methacrylate) irradiated with gamma rays. Int Polym Proc 32(2):174–182

    Article  CAS  Google Scholar 

  22. Moreno-Castilla C (2004) Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42(1):83–94

    Article  CAS  Google Scholar 

  23. Kim BJ, Oh SG, Han MG, Im SS (2001) Synthesis and characterization of polyaniline nanoparticles in SDS micellar solutions. Synth Met 122(2):297–304

    Article  CAS  Google Scholar 

  24. Hasik M, Drelinkiewicz A, Wenda E, Paluszkiewicz C, Quillard S (2001) FTIR spectroscopic investigations of polyaniline derivatives–palladium systems. J Mol Struct 596(1):89–99

    Article  CAS  Google Scholar 

  25. Werake LK, Story JG, Bertino MF, Pillalamarri SK, Blum FD (2005) Photolithographic synthesis of polyaniline nanofibres. Nanotechnology 16(12):2833

    Article  CAS  Google Scholar 

  26. Rana S, Jadhav NV, Barick KC, Pandey BN, Hassan PA (2014) Polyaniline shell cross-linked Fe3O4 magnetic nanoparticles for heat activated killing of cancer cells. Dalton Trans 43(32):12263–12271

    Article  CAS  Google Scholar 

  27. Jurisson SS, Hirth W, Linder KE, Di Rocco RJ, Narra RK, Nowotnik DP, Nunn AD (1991) Chloro → hydroxy substitution on technetium BATO [TcCl (dioxime) 3BR] complexes. Int J Rad Appl Instr Part B Nucl Med Biol 18(7):735–744

    Article  CAS  Google Scholar 

  28. Morales GM, Llusa M, Miras MC, Barbero C (1997) Effects of high hydrochloric acid concentration on aniline chemical polymerization. Polymer 38(20):5247–5250

    Article  CAS  Google Scholar 

  29. Stejskal J, Kratochvil P, Radhakrishnan N (1993) Polyaniline dispersions 2. UV–vis absorption spectra. Synth Met 61(3):225–231

    Article  CAS  Google Scholar 

  30. Dai L, Lu J, Matthews B, Mau AAW (1998) Doping of conducting polymers by sulfonated fullerene derivatives and dendrimers. J Phys Chem B 102(21):4049–4053

    Article  CAS  Google Scholar 

  31. Schemid AL, Torresi SI, Bassetto AN, Carlos IA (2000) Structural, morphological and spectroelectrochemical characterization of poly (2-ethyl aniline). J Braz Chem Soc 11(3):317–323

    Article  CAS  Google Scholar 

  32. Wan M (1992) Absorption spectra of thin film of polyaniline. J Polym Sci Part A Polym Chem 30(4):543–549

    Article  CAS  Google Scholar 

  33. Monkman AP, Adams P (1991) Structural characterisation of polyaniline free standing films. Synth Met 41(3):891–896

    Article  CAS  Google Scholar 

  34. Stafström S, Bredas JL, Epstein AJ, Woo HS, Tanner DB, Huang WS, MacDiarmid AG (1987) Polaron lattice in highly conducting polyaniline: theoretical and optical studies. Phys Rev Lett 59(13):1464

    Article  Google Scholar 

  35. Do Nascimento GM (2010) Spectroscopy of polyaniline nanofibers. INTECH Open Access Publisher

  36. Ballauff M (1989) Stiff-chain polymers—structure, phase behavior, and properties. Angew Chem Int Ed 28(3):253–267

    Article  Google Scholar 

  37. Lauter U, Meyer WH, Wegner G (1997) Molecular composites from rigid-rod poly (p-phenylene) s with oligo (oxyethylene) side chains as novel polymer electrolytes. Macromolecules 30(7):2092–2101

    Article  CAS  Google Scholar 

  38. Platé NA, Shibaev VP (2012) Comb-shaped polymers and liquid crystals. Springer Science & Business Media, Berlin

    Google Scholar 

  39. Sapurina Irina, Stejskal Jaroslav (2008) The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym Int 57(12):1295–1325

    Article  CAS  Google Scholar 

  40. Stejskal J, Hlavata D, Holler P, Trchová M, Prokeš J, Sapurina Irina (2004) Polyaniline prepared in the presence of various acids: a conductivity study. Polym Int 53(3):294–300

    Article  CAS  Google Scholar 

  41. Baker CO, Huang X, Nelson W, Kaner RB (2017) Polyaniline nanofibers: broadening applications for conducting polymers. Chem Soc Rev 46(5):1510–1525

    Article  CAS  Google Scholar 

  42. Thema FT, Beukes P, Nuru ZY, Kotsedi L, Khenfouch M, Dhlamini MS, Maaza M (2015) Physical properties of graphene via γ-radiolysis of exfoliated graphene oxide. Mater Today: Proc 2(7):4038–4045

    Article  Google Scholar 

  43. Chow TJ (ed) (2014) Organic structures design: applications in optical and electronic devices. CRC Press, Boca Roton

    Google Scholar 

  44. Sapurina I, Stejskal J (2008) The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym Int 57(12):1295–1325

    Article  CAS  Google Scholar 

  45. Ding Y, Buyle Padias A, Hall HK (1999) Chemical trapping experiments support a cation-radical mechanism for the oxidative polymerization of aniline. J Polym Sci Part A Polym Chem 37(14):2569–2579

    Article  CAS  Google Scholar 

  46. Wei Y et al (1989) A study of the mechanism of aniline polymerization. J Poly Sci Part A Polym Chem 27(7):2385–2396

    Article  CAS  Google Scholar 

  47. Shim YB, Won MS, Park SM (1990) Electrochemistry of conductive polymers VIII in situ spectroelectrochemical studies of polyaniline growth mechanisms. J Electrochem Soc 137(2):538–544

    Article  CAS  Google Scholar 

  48. Felix JF, Barros RA, De Azevedo WM, Da Silva EF (2011) X-ray irradiation: a non-conventional route for the synthesis of conducting polymers. Synth Met 161(1):173–176

    Article  CAS  Google Scholar 

  49. Wang J, Zhang D (2013) One-dimensional nanostructured polyaniline: syntheses, morphology controlling, formation mechanisms, new features, and applications. Adv Polym Technol 32(S1):E323–E368

    Article  CAS  Google Scholar 

  50. Genies EM, Lapkowski M (1987) Spectroelectrochemical evidence for an intermediate in the electropolymerization of aniline. J Electroanal Chem Interfacial Electrochem 236(1–2):189–197

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed M. Ghobashy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghobashy, M.M., Alkhursani, S.A. & Madani, M. Radiation-induced nucleation and pH-controlled nanostructure shape of polyaniline dispersed in DMF. Polym. Bull. 75, 5477–5492 (2018). https://doi.org/10.1007/s00289-018-2336-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2336-8

Keywords

Navigation