Skip to main content

Advertisement

Log in

Rate-dependent mechanical characteristics of polytetrafluoroethylene (PTFE) gaskets under cyclic pulsating compression

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Accumulated deformations of polytetrafluoroethylene (PTFE) gaskets under cyclic stress-controlled compressive loads considering temperatures and stress rates are tested. Results present that the accumulated compressive deformation of PTFE gaskets becomes load rate independent when the stress rate is less than 0.1 MPa/s under various temperatures. The compressive deformation accumulates during the initial 50 or more cycles, but it always turns to shakedown subsequently under the experimental conditions. Moreover, the accumulated strain is sensitive to temperature due to material softening and time-dependent creep, especially when the temperature is over 100 °C. This research provides important data for the safety assessment of sealing joints with PTFE gaskets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Guo JQ, Zheng XT, Zhang Y, Shi HC, Meng WZ (2013) A unified continuum damage mechanics model for predicting the stress relaxation behavior of high-temperature bolting. ASME J Press Vessel Technol 136(1):011203

    Article  CAS  Google Scholar 

  2. Guo JQ, Meng WZ, Zheng XT, Tian L, Shi HC (2015) Prediction of stress relaxation from creep data in terms of average creep rate. J Strain Anal Eng Des 50(1):15–24

    Article  Google Scholar 

  3. Guo JQ, Li F, Zheng XT, Shi HC, Meng WZ (2016) An accelerated method for creep prediction from short term stress relaxation tests. J Press Vessel Technol 138(3):031401

    Article  CAS  Google Scholar 

  4. Zheng XT, Xuan FZ (2012) Shakedown analysis of multilayered beams coupled with ductile damage. Nucl Eng Des 250:14–22

    Article  CAS  Google Scholar 

  5. Zheng XT, Peng CF, Yu JY (2015) A unified shakedown assessment method for butt welded joints with various weld groove shapes. J Press Vessel Technol 137(2):021404

    Article  Google Scholar 

  6. Nayebi A, Abdi RE (2008) Shakedown analysis of beams using nonlinear kinematic hardening materials coupled with continuum damage mechanics. Int J Mech Sci 50(8):1247–1254

    Article  Google Scholar 

  7. Zheng XT, Wu KW, Wang W, Yu JY, Xu JM, Ma LW (2017) Low cycle fatigue and ratcheting behavior of 35CrMo structural steel at elevated temperature. Nucl Eng Des 314(1):285–292

    Article  CAS  Google Scholar 

  8. Meggiolaro MA, Castro JTPD, Wu H (2016) A general class of non-linear kinematic models to predict mean stress relaxation and multiaxial ratcheting in fatigue problems—Part I: Ilyushin spaces. Int J Fatigue 82:158–166

    Article  Google Scholar 

  9. Chen X, Jiao R, Kim KS (2005) On the Ohno–Wang kinematic hardening rules for multiaxial ratcheting modeling of medium carbon steel. Int J Plast 21(1):161–184

    Article  CAS  Google Scholar 

  10. Taleb L, Cailletaud G (2010) An updated version of the multimechanism model for cyclic plasticity. Int J Plast 26(6):859–874

    Article  CAS  Google Scholar 

  11. Chaboche JL, Nouailhas D (1989) Constitutive modeling of ratchetting effects—Part I: Experimental facts and properties of the classical models. J Eng Mater Technol 111(4):384–392

    Article  Google Scholar 

  12. Chaboche JL, Nouailhas D (1989) Constitutive modeling of ratchetting effects—Part II: Possibilities of some additional kinematic rules. J Eng Mater Technol 111(4):384–392

    Article  Google Scholar 

  13. Rokhgireh H, Nayebi A, Chaboche JL (2017) Application of a new distortional yield surface model in cyclic uniaxial and multiaxial loading. Int J Solids Struct 110–111:219–238

    Article  Google Scholar 

  14. Vincent L, Calloch S, Kurtyka T, Marquis D (2002) An improvement of multiaxial ratchetting modeling via yield surface distortion. J Eng Mater Technol 124(4):402–411

    Article  CAS  Google Scholar 

  15. Zhang SL, Xuan FZ, Guo SJ, Zhao P (2017) The role of anelastic recovery in the creep–fatigue interaction of 9–12% Cr steel at high temperature. Int J Mech Sci 122:95–103

    Article  Google Scholar 

  16. Wu DL, Xuan FZ, Guo SJ, Zhao P (2016) Uniaxial mean stress relaxation of 9–12% Cr steel at high temperature: experiments and viscoplastic constitutive modeling. Int J Plast 77:156–173

    Article  CAS  Google Scholar 

  17. Zhao P, Xuan FZ, Wu DL (2017) Cyclic softening behaviors of modified 9–12% Cr steel under different loading modes: role of loading levels. Int J Mech Sci 131–132:278–285

    Article  Google Scholar 

  18. Zhang SL, Xuan FZ (2017) Interaction of cyclic softening and stress relaxation of 9–12% Cr steel under strain-controlled fatigue–creep condition: experimental and modeling. Int J Plast 98:45–64

    Article  CAS  Google Scholar 

  19. Lytwyn M, Chen HF, Ponter ARS (2015) A generalised method for ratchet analysis of structures undergoing arbitrary thermo-mechanical load histories. Int J Numer Methods Eng 104(2):104–124

    Article  Google Scholar 

  20. Zheng XT, Peng HY, Yu JY, Wang W, Lin W, Xu JM (2017) Analytical ratchet limit for pressurized pipeline under cyclic nonproportional loadings. J Pipeline Syst Eng Pract 8(3):04017002

    Article  Google Scholar 

  21. Shen X, Xia Z, Ellyin F (2004) Cyclic deformation behavior of an epoxy polymer. Part I: experimental investigation. Polym Eng Sci 44(12):2240–2246

    Article  CAS  Google Scholar 

  22. Xia Z, Shen X, Ellyin F (2005) Cyclic deformation of an epoxy polymer. Part II: Prediction of viscoelastic constitutive models. Poly. Eng Sci 45(1):103–113

    CAS  Google Scholar 

  23. Chen X, Hui S (2005) Ratcheting behavior of PTFE under cyclic compression. Polym Test 24(7):829–833

    Article  CAS  Google Scholar 

  24. Tao G, Xia Z (2009) Biaxial fatigue behavior of an epoxy polymer with mean stress effect. Int J Fatigue 31(4):678–685

    Article  CAS  Google Scholar 

  25. Singh H, Gupta M, Mahajan P (2017) Reduced order multiscale modeling of fiber reinforced polymer composites including plasticity and damage. Mech Mater 111:35–56

    Article  Google Scholar 

  26. Shojaei AK, Wedgewood AR (2017) An anisotropic cyclic plasticity, creep and fatigue predictive tool for unfilled polymers. Mech Mater 106:20–34

    Article  Google Scholar 

  27. Rae PJ, Dattelbaum DM (2004) The properties of poly (tetrafluoroethylene) (PTFE) in tension. Polymer 45(19):7615–7625

    Article  CAS  Google Scholar 

  28. Xu W, Gao H, Gao L, Chen X (2014) Uniaxial time-dependent ratcheting behavior of bronze powder filled polytetrafluoroethylene at room and high temperature. Polym Eng Sci 54(7):1571–1578

    Article  CAS  Google Scholar 

  29. Zheng XT, Wen X, Wang W, Gao JY et al (2017) Creep-ratcheting behavior of PTFE gaskets under various temperatures. Polym Test 60:229–235

    Article  CAS  Google Scholar 

  30. Zhang Z, Chen X, Wang YP (2010) Uniaxial ratcheting behavior of polytetrafluoroethylene at elevated temperature. Polym Test 29(3):352–357

    Article  CAS  Google Scholar 

  31. Lu F, Kang G, Zhu Y, Cui X, Jiang H (2016) Experimental observation on multiaxial ratchetting of polycarbonate polymer at room temperature. Polym Test 50:135–144

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Hubei Provincial Department of Education Science and Technology Research Program (D20161508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. T. Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X.T., Zhang, X.H., Ma, L.W. et al. Rate-dependent mechanical characteristics of polytetrafluoroethylene (PTFE) gaskets under cyclic pulsating compression. Polym. Bull. 75, 4783–4796 (2018). https://doi.org/10.1007/s00289-018-2298-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2298-x

Keywords

Navigation