Skip to main content
Log in

A comparative study between three different methods of hydrogel network characterization: effect of composition on the crosslinking properties using sol–gel, rheological and mechanical analyses

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Previously, different techniques were used to identify the crosslinking density of hydrogels. In this study, we aimed to compare three different methods of network structure determination: using sol–gel analyses, rheological and mechanical experiments. To do this, we synthesized a polyvinylpyrrolidone (PVP) hydrogel using gamma-ray crosslinking. The effect of dose, PVP, polyethylene glycol (PEG) and agar content on network properties and mesh size were investigated. It was found that rheological experiment gives more precise results. Determined network parameters such as molecular weight between crosslinks \(\left( {\overline{{M_{\text{c}} }} } \right)\), crosslinking density (v e) and mesh size (ξ), were used to determine the impact of composition on physicochemical properties. It was found that increasing dose and PVP content leads to an increase in the crosslinking density and a decrease in pore size. However, increasing agar and PEG molar ratio leads to a decrease in the crosslinking density. Regarding elastic behavior, it was found that agar increases viscous modulus and acts as a crosslinking inhibitor but PEG decreases it and acts as a plasticizer. These results were confirmed by determining the state of water in hydrogel network using pulse NMR. SEM images confirmed also calculated network parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jones DS (1999) Dynamic mechanical analysis of polymeric systems of pharmaceutical and biomedical significance. Int J Pharm 179:167–178

    Article  CAS  PubMed  Google Scholar 

  2. Fechine GJM, Barros JAG, Alcântara MR, Catalani LH (2006) Fluorescence polarization and rheological studies of the poly(N-vinyl-2-pyrrolidone) hydrogels produced by UV radiation. Polymer 47:2629–2633

    Article  CAS  Google Scholar 

  3. Şen M, Hayrabolulu H (2012) Radiation synthesis and characterisation of the network structure of natural/synthetic double-network superabsorbent polymers. Radiat Phys Chem 81:1378–1382

    Article  CAS  Google Scholar 

  4. Enas MA (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121

    Article  CAS  Google Scholar 

  5. Maolin Z, Jun L, Min Y, Hongfei H (2000) The swelling behaviour of radiation prepared semi-interpenetrating polymer networks composed of polyNIPAAm and hydrophilic polymers. Radiat Phys Chem 58:397–400

    Article  Google Scholar 

  6. Rosiak JM, Ulanski P (1999) Synthesis of hydrogels by irradiation of polymers in aqueous solution. Radiat Phys Chem 55:139

    Article  CAS  Google Scholar 

  7. Momesso RGRAP, Moreno CS, Rogero SO, Rogero JR, Spencer PJ, Lugão AB (2010) Radiation stability of resveratrol in immobilization on poly vinyl pyrrolidone hydrogel dressing for dermatological use. Radiat Phys Chem 79:283–285

    Article  CAS  Google Scholar 

  8. Rosiak JM, Olejniczak J, Pȩkala W (1990) Fast reaction of irradiated polymers crosslinking and degradation of polyvinylpyrrolidone. Radiat Phys Chem 36:747–755

    CAS  Google Scholar 

  9. Ajji Z, Mirjalili G, Alkhatab A, Dada H (2008) Use of electron beam for the production of hydrogel dressings. Radiat Phys Chem 77:200–202

    Article  CAS  Google Scholar 

  10. Lilian C, Lopérgolo B, Ademar L, Catalani H (2003) Direct UV photocrosslinking of poly(N-vinyl-2-pyrrolidone) (PVP) to produce hydrogels. Polymer 44:6217–6222

    Article  CAS  Google Scholar 

  11. Lugao AB, Sizue O, Malmonge RS (2002) Rheological behaviour of irradiated wound dressing poly(vinyl pyrrolidone) hydrogels. Radiat Phys Chem 63:543–546

    Article  CAS  Google Scholar 

  12. Farah K, Jerbi T, Kuntz F, Kovacs A (2006) Dose measurements for characterization of a semi-industrial cobalt-60 gamma-irradiation facility. Radiat Measur 41:201–208

    Article  CAS  Google Scholar 

  13. Mark JE, Erman B (1988) Rubberlike elasticity a molecular primer, 2nd edn. Wiley, NewYork

    Google Scholar 

  14. Mahmudi N, Sen M, Rendevski S, Guven O (2007) Radiation synthesis of low swelling acrylamide based hydrogels and determination of average molecular weight between crosslinks. Nucl Instr Methods Phys Res B 265:375–378

    Article  CAS  Google Scholar 

  15. Sen M, Yakar A, Guven O (1999) Determination of average molecular weight between crosslinks from swelling behaviours of diprotic acid-containing hydrogels. J Polym Sci 40:2969–2974

    CAS  Google Scholar 

  16. Uzun C, Hassnisaber M, Şen M, Güven O (2003) Enhancement and control of crosslinking of dimethylaminoethyl methacrylate irradiated at low dose rate in the presence of ethylene glycol dimethacrylate. Nucl Inst Methods Phys Res B 208:242–246

    Article  CAS  Google Scholar 

  17. De Paula R, Rodrigues J (1995) Composition and rheological properties of cashew tree gum, the exudate polysaccharide from Anacardium occidentale L. Carb Polym 26:177

    Article  Google Scholar 

  18. Ferruzzi G, Pan N, Casey W (2000) Mechanical properties of gellan and polyacrylamide gels with implications for soil stabilization. Soil Sci 165:778

    Article  CAS  Google Scholar 

  19. Şen M, Aguş O, Safrany A (2007) Controlling of pore size and distribution of PDMAEMA hydrogels prepared by gamma rays. Radiat Phys Chem 76:1342–1346

    Article  CAS  Google Scholar 

  20. Treloar LRG (1975) The physics of rubber elasticity, 3rd edn. Clarendon, Oxford

    Google Scholar 

  21. Peppas NA, Mikos AG (1986) Preparation methods and structure of hydrogels in medicine and pharmacy. Hyd Med Pharm 1:27–54

    CAS  Google Scholar 

  22. Carr DA, Peppas NA (2009) Molecular structure of physiologically-responsive hydrogels controls diffusive behavior. Macromol Biosci 9:497–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao F, Zhao S, Weina BO, Kuhn W, Blieskastel YJ (2007) Characterization of elastomer networks by NMR parameters Part I sulfur-cured NR networks. KGK 60:554–558

    CAS  Google Scholar 

  24. Ammar Nour Elhouda Ben, Saied Taib, Mejri Arbi, Hosni Faouzi, Mnif Adel, Hamzaoui Ahmed Hichem (2016) Study of agar proportions effect on a gamma ray synthesized hydrogel. J Mater Sci Eng A 6:87–99

    Google Scholar 

  25. Abad LV, Relleve LS, Aranilla CT, Dela Rosa AM (2003) Properties of radiation synthesized PVP-kappa carrageenan hydrogel blends. Rad Phys Chem 68(5):901–908

    Article  CAS  Google Scholar 

  26. Fechine GJM, Barros JAG, Alcântara MR, Catalani LH (2006) Fluorescence polarization and rheological studies of the poly(N-vinyl-2-pyrrolidone) hydrogels produced by UV radiation. Polymer 47:2629–2633

    Article  CAS  Google Scholar 

  27. Dispenza C, Grimaldi N, Sabatino M, Todaro S, Bulone D, Giacomazza D (2012) Studies of network organization and dynamics of e-beam crosslinked PVPs: from macro to nano. Radiat Phys Chem 81:1349–1353

    Article  CAS  Google Scholar 

  28. Wang M, Xu L, Hu H, Zhai M, Peng J, Nho Y, Li J, Wei G (2007) Radiation synthesis of PVP/CMC hydrogels as wound dressing. Nucl Instr Methods Phys Res Sect B 265:385–389

    Article  CAS  Google Scholar 

  29. Fratricova M, Schwarzer P (2006) 1H-NMR relaxation study of crosslinking and aging processes in polyurethane coatings. KGK 59:229–235

    CAS  Google Scholar 

  30. Benamer S, Mahlous M, Boukrif A, Mansouri B, Youcef SL (2006) Synthesis and characterisation of hydrogels based on poly(vinyl pyrrolidone). Nucl Instr Methods Phys Res Sect B 248:284–290

    Article  CAS  Google Scholar 

  31. Makuuchi K (2010) Critical review of radiation processing of hydrogel and polysaccharide. Radiat Phys Chem 79:267–271

    Article  CAS  Google Scholar 

  32. Bardajee GR, Pourjavadia A, Sheikh N, Amini-Fazl MS (2008) Grafting of acrylamide onto kappa-carrageenan via gamma-irradiation: optimization and swelling behavior. Radiat Phys Chem 77:131–137

    Article  CAS  Google Scholar 

  33. An J, Weaver A, Kim B, Barkatt A, Poster D, Vreeland WN, Silverman J, Al-sheikhly M (2011) Radiation-induced synthesis of poly (vinylpyrrolidone) nanogel. Polymer 52:5746–5755

    Article  CAS  Google Scholar 

  34. Demeter M, Virgolici M, Vancea C, Scarisoreanu A, Georgiana M, Kaya A, Meltzer V (2017) Network structure studies on γ–irradiated collagen–PVP superabsorbent hydrogels. Radiat Phys Chem 131:51–59

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nour Elhouda Ben Ammar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Ammar, N.E., Saied, T., Barbouche, M. et al. A comparative study between three different methods of hydrogel network characterization: effect of composition on the crosslinking properties using sol–gel, rheological and mechanical analyses. Polym. Bull. 75, 3825–3841 (2018). https://doi.org/10.1007/s00289-017-2239-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2239-0

Keywords

Navigation