Skip to main content
Log in

Physical and chemical properties of gamma-irradiated styrene–butadiene rubber/vermiculite clay nanocomposites modified using maleic anhydride

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, nanoparticle vermiculite clay was prepared by acid treated with hydrochloric acid at room temperature for and dried at 300 °C for different time intervals. The untreated (VMT) and acid-treated (DVMT) vermiculite clay were characterized by X-ray diffraction (XRD), FT-IR, and transmission electron microscopy. The DVMT and maleic anhydride (MA) at different concentrations (parts per hundred of rubber) were mixed with styrene–butadiene rubber (SBR) to obtain SBR/DVMT/MA nanocomposites. The SBR/VMT composites and SBR nanocomposites were subjected to gamma irradiation at different doses from 25 to 150 kGy. As a comparison, the gamma-irradiated SBR composites with VMT and nanocomposites with DVMT/MA were characterized in terms of XRD, physico-chemical and thermal properties. The results indicated that the incorporation of DVMT nanoparticles and MA improved the physico-chemical and thermal properties of the SBR/clay nanocomposite. The improvement was achieved when the contents of both DVMT and MA were 10 phr and irradiation dose of 100 kGy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alexandre M, Dubois P (2000) Nanocomposites derived from polymers and inorganic nanoparticles. Mater Sci Eng 28:1

    Article  Google Scholar 

  2. Tjong SC, Meng YZ, Xu YJ (2002) Preparation and properties of polyamide 6/polypropylene/vermiculite nanocomposite/polyamide 6 alloys. Appl Polym Sci 86:2330

    Article  CAS  Google Scholar 

  3. Tjong SC, Meng YZ, Xu Y (2002) Structure and properties of polyamide-6/vermiculite nanocomposites prepared by direct melt compounding. J Polym Sci B 40:2860

    Article  CAS  Google Scholar 

  4. Tjong SC, Meng YZ, Hay AS (2002) Novel preparation and properties of polypropylene vermiculite nanocomposites. Chem Mater 14:44–51

    Article  CAS  Google Scholar 

  5. Swenson J, Smalley MV, Hatharasinghe HLM, Fragneto G (2001) Interlayer, structure of clay-polymer- salt-water system. Langmuir 17:3813

    Article  CAS  Google Scholar 

  6. Chmielarz L, Wojciechowska M, Rutkowska M, Adamski A, Węgrzyn A, Kowalczyk A, Dudek B, Boroń P, Michalik M, Matusiewicz A (2012) Acid-activated vermiculites as catalysts of the DeNOx process. Catal Today 191(1):25–31

    Article  CAS  Google Scholar 

  7. Santos SSG, Silva HRM, De Souza AG, Alves APM, Da Silva Filho EC, Fonseca MG (2015) Acid-leached mixed vermiculites obtained by treatment with nitric acid. Appl Clay Sci 104:286–294

    Article  CAS  Google Scholar 

  8. Wang L, Wang X, Cui S, Fan X, Zu B, Wang C (2013) TiO2 supported on silica nanolayers derived from vermiculite for efficient photocatalysis. Catal Today 216:95–103

    Article  CAS  Google Scholar 

  9. Yu X, Wei C, Ke L, Wu H, Chai X, Hu Y (2012) Preparation of trimethylchlorosilane-modified acid vermiculites for removing diethyl phthalate from water. J Colloid Interface Sci 369(1):344–351

    Article  CAS  PubMed  Google Scholar 

  10. Abate G, dos Santos LO, Colombo SM, Masini JC (2006) Removal of fulvic acid from aqueous media by adsorption onto modified vermiculite. Appl Clay Sci 32(3–4):261–270

    Article  CAS  Google Scholar 

  11. Bhattacharya M, Biswas S, Bhowmick AK (2011) Permeation characteristics and modeling of barrier properties of multifunctional rubber nanocomposites. Polym Sci 52(7):1562–1576

    CAS  Google Scholar 

  12. Fischer H (2003) Polymer nanocomposites: from fundamental research to specific applications. Mater Sci Eng C 23:763–772

    Article  CAS  Google Scholar 

  13. Chakraborty S, Saptarshi K, Saikat D, Rabindra M, Chauhan Narendra PS, Suresh C (2010) Study of the properties of in situ sodium activated and organomodified bentonite clay—SBR nanocomposites—part I: characterization and rheometric properties. Polym Testing 29(2010):181–187

    Article  CAS  Google Scholar 

  14. Praveen S, Chattopadhyay PK, Albert P, Dalvi VG, Chakraborty BC, Chattopadhyay S (2009) Synergistic effect of carbon black and nanoclay fillers in styrene–butadiene rubber matrix: development of dual structure. Compos A 40(3):309–316

    Article  CAS  Google Scholar 

  15. Zhang L, Wang Y, Wang Y, Sui Y, Yu D (2000) Morphology and mechanical properties of clay/styrene–butadiene rubber nanocomposites. J Appl Polym Sci 78(11):1873–1878

    Article  CAS  Google Scholar 

  16. Mousa A, Kocsis JK (2001) Rheological and thermodynamical behavior of styrene/butadiene rubber organoclay nanocomposites. Macromol Mater Eng 286(4):260–266

    Article  CAS  Google Scholar 

  17. Singh R, Shah MD, Jain SK, Shit SC, Giri R (2013) Mechanical and thermal properties of styrene–butadiene rubber (SBR) based on carbon black and nanoclay. J Inf Knowl Res Mech Eng 2(2):515–521

    Google Scholar 

  18. Naseri ASZA, Arani ZJ (2016) Study on the morphology, static and dynamic mechanical properties of (styrene–butadiene rubber/ethylene–propylene–diene monomer/organoclay) nanocomposites vulcanized by the gamma radiation. J Appl Polym Sci 133:43581

    Google Scholar 

  19. Mohamed RM (2013) Radiation induced modification of NBR and SBR montmorillonite nanocomposites. J Ind Eng Chem 19:80–86

    Article  CAS  Google Scholar 

  20. Wang O, Wang F, Cheng K (2009) Effect of crosslink density on some properties of electron beam-irradiated styrene–butadiene rubber. Radiat Phys Chem 78:1001–1005

    Article  CAS  Google Scholar 

  21. Youssef H, Ali Z, El-Nemr K, Bekhit, M (2014) Thermal and structural characterization behavior of electron beam irradiated rubber/clay nanocomposites. Adv Polymer Technol 33(2). https://doi.org/10.1002/adv.21396

  22. Ali Zakaria, El-Nemr Khaled, Youssef Hussain, Bekhit Mohamad (2013) Mechanical and physicochemical properties of electron beam irradiated rubber/clay nanocomposites. Polym Compos 34:1600–1610

    Article  CAS  Google Scholar 

  23. Markovic G, Jovanovic V, Samarzija-Jovanovic S, Marinović-Cincovic M, Budinski-Simendic J (2012) Thermal stability of γ-irradiated chlorinated isobutylene– isoprene copolymer/chlorosulphonated polyethylene rubber blend/carbon black nanocomposites. J Thermoplast Compos Mater 26:1071

    Article  CAS  Google Scholar 

  24. Komandel P, Madejova J, Bergaya F, Theng BKG, Lagaly G (eds) (2006) Handbook of clay science, 2nd edn. Elsevier, UK, pp 236–287

  25. Michal R, Jana Z, Marta V (2014) Vibrational spectroscopy of acid treated vermiculites. Vib Spectrosc 70:63–69

    Article  CAS  Google Scholar 

  26. Bray HJ, Redfern SAT, Clark SM (1999) Kinetics of dehydration of Ca-montmorillonite. Phys Chem Miner 26:591–600

    Article  CAS  Google Scholar 

  27. Földvári M (2011) Handbook of thermogravimetric system of minerals and its use in geological practice. Geological Institute of Hungary, Budapest, p 81

  28. Bennadji FG, Lecomte NG, Mayet R, Bonnet JP, Rossignol S (2015) Effect of organic modification on the thermal transformations of a bentonite during sintering up to 1250°C. Bull Mater Sci 38(2):357–363

    Article  CAS  Google Scholar 

  29. Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201:68

    Article  CAS  Google Scholar 

  30. Broido A (1969) A simple, sensitive graphical method of treating thermogravimetric analysis data. J Polym Sci A 7:1761

    Article  CAS  Google Scholar 

  31. Khalil AM, El-Nemr KhF, Khalaf AM (2012) Effect of short polyethylene terephthalate fibers on properties of ethylene–propylene diene rubber composites. J Polym Res 19:9883

    Article  CAS  Google Scholar 

  32. Mon SG, Ruban YV, Roy DV (2011) Synthesis of kaolinite-filled EPDM rubber composites by solution intercalation: structural characterization and studies on mechanical properties. Appl Nanosci 1:131

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. Abdel Wahab M. El-Naggar, Radiation Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority for the supervision and practical support under the MSc thesis of the Chemist Saleh N. Saleh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled F. El-Nemr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nemr, K.F., Ali, M.A.M., El-Sayed, S.N. et al. Physical and chemical properties of gamma-irradiated styrene–butadiene rubber/vermiculite clay nanocomposites modified using maleic anhydride. Polym. Bull. 75, 3587–3606 (2018). https://doi.org/10.1007/s00289-017-2227-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2227-4

Keywords

Navigation