Skip to main content
Log in

The potential use of gentamicin sulfate-loaded silk fibroin/gelatin blend scaffolds for wound dressing materials

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Gentamicin sulfate (GS)-loaded silk fibroin (SF)/gelatin (Gel) scaffolds were prepared by the freeze-drying method. The effect of blending ratios of SF and Gel (i.e., 0/100, 30/70, 50/50, 70/30, and 100/0) in the scaffolds on the morphology, pore size, compressive modulus, water swelling, weight loss, and release profiles was investigated. The pore sizes of the neat and the GS-loaded SF/Gel blend scaffolds were 60–138 μm. Increasing SF content and the addition of GS in the scaffolds caused the compressive modulus of the scaffolds to decrease. Moreover, the addition of GS caused the water swelling and weight loss behaviors of these scaffolds to increase. The cumulative released amount of GS from the GS-loaded SF/Gel blend scaffolds decreased with an increase of SF content in the scaffolds. All scaffolds showed high activity against the growth of Staphylococcus aureus, Staphylococcus epidermidis, Micrococcus luteus, Bacillus cereus, and Pseudomonas aeruginosa,. Finally, all the GS-loaded SF/Gel blend scaffolds were proven non-toxic to NHDF cells except for the GS-loaded SF/Gel blend scaffolds at blending ratio 100/0. From these results, these scaffolds had the potential for use as wound dressing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Clark RAF, Ghosh K, Tonnesen MG (2007) Tissue engineering for cutaneous wounds. J Invest Dermatol 127:1018–1029. doi:10.1038/sj.jid.5700715

    Article  CAS  PubMed  Google Scholar 

  2. Balasubramani M, Kumar TR, Babu M (2001) Skin substitutes: a review. Burns 27:534–544. doi:10.1016/S0305-4179(01)00018-3

    Article  CAS  PubMed  Google Scholar 

  3. Singer AJ, Clark RAF (1999) Cutaneous wound healing. N Engl J Med 341:738–746. doi:10.1056/NEJM199909023411006

    Article  CAS  PubMed  Google Scholar 

  4. Elsner JJ, Zilberman M (2010) Novel antibiotic-eluting wound dressings: an in vitro study and engineering aspects in the dressing’s design. J Tissue Viability 19:54–66. doi:10.1016/j.jtv.2009.11.001

    Article  PubMed  Google Scholar 

  5. Stashak TS, Farstvedt E, Othic A (2004) Update on wound dressings: indications and best use. Clin Tech Equine Pract 3:148–163. doi:10.1053/j.ctep.2004.08.006

    Article  Google Scholar 

  6. Zhong SP, Zhang YZ, Lim CT (2010) Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:510–525. doi:10.1002/wnan.100

    Article  CAS  PubMed  Google Scholar 

  7. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011:1987–9422. doi:10.1155/2011/290602

    Article  Google Scholar 

  8. Hou Q, Grijpma DW, Feijen J (2003) Preparation of interconnected highly porous polymeric structures by a replication and freeze-drying process. J Biomed Mater Res B 67:732–740. doi:10.1002/jbm.b.10066

    Article  CAS  Google Scholar 

  9. Lu T, Li Y, Chen T (2013) Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int J nanomedicine 8:337–350. doi:10.2147/IJN.S38635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen G, Ushida T, Tateishi T (2002) Scaffold design for tissue engineering. Macromol Biosci 2:67–77. doi:10.1002/1616-5195(20020201)2:2<67:AID-MABI67>3.0.CO;2-F

    Article  CAS  Google Scholar 

  11. Hariraksapitak P, Supaphol P (2010) Preparation and properties of α-chitin-whisker-reinforced hyaluronan–gelatin nanocomposite scaffolds. J Appl Polym Sci 117:3406–3418. doi:10.1002/app.32095

    Article  CAS  Google Scholar 

  12. Shahverdi S, Hajimiri M, Esfandiari MA, Larijani B, Atyabi F, Rajabiani A, Dehpour AR, Gharehaghaji AA, Dinarvand R (2014) Fabrication and structure analysis of poly(lactide-co-glycolic acid)/silk fibroin hybrid scaffold for wound dressing applications. Int J Pharm 473:345–355. doi:10.1016/j.ijpharm.2014.07.021

    Article  CAS  PubMed  Google Scholar 

  13. Singaravelu S, Ramanathan G, Raja MD, Nagiah N, Padmapriya P, Kaveri K, Sivagnanam UT (2016) Biomimetic interconnected porous keratin–fibrin–gelatin 3D sponge for tissue engineering application. Int J of Biol Macromolec 86:810–819. doi:10.1016/j.ijbiomac.2016.02.021

    Article  CAS  Google Scholar 

  14. Mahmoud AA, Salama AH (2016) Norfloxacin-loaded collagen/chitosan scaffolds for skin reconstruction: preparation, evaluation and in vivo wound healing assessment. Eur J Pharm Sci 83:155–165. doi:10.1016/j.ejps.2015.12.026

    Article  CAS  PubMed  Google Scholar 

  15. Carvalho IC, Mansur HS (2017) Engineered 3D-scaffolds of photocrosslinked chitosan-gelatin hydrogel hybrids for chronic wound dressings and regeneration. Mater Sci Eng C 78:690–705. doi:10.1016/j.msec.2017.04.126

    Article  CAS  Google Scholar 

  16. Han F, Dong Y, Su Z, Yin R, Song A, Li S (2014) Preparation, characteristics and assessment of a novel gelatin–chitosan sponge scaffold as skin tissue engineering material. Int J Pharm 476:124–133. doi:10.1016/j.ijpharm.2014.09.036

    Article  CAS  PubMed  Google Scholar 

  17. Shi L, Yang N, Zhang H, Chen L, Tao L, Wei Y, Liu H, Luo Y (2015) A novel poly(γ-glutamic acid)/silk-sericin hydrogel for wound dressing: synthesis, characterization and biological evaluation. Mater Sci Eng C 48:533–540. doi:10.1016/j.msec.2014.12.047

    Article  CAS  Google Scholar 

  18. Gómez-Guillén MC, Giménez B, López-Caballero ME, Montero MP (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll 25:1813–1827. doi:10.1016/j.foodhyd.2011.02.007

    Article  CAS  Google Scholar 

  19. Zhang Q, Wang Q, Lv S, Lu J, Jiang S, Regenstein JM, Lin L (2016) Comparison of collagen and gelatin extracted from the skins of Nile tilapia (Oreochromis niloticus) and channel catfish (lctalurus punctatus). Food Biosci 13:41–48. doi:10.1016/j.fbio.2015.12.005

    Article  CAS  Google Scholar 

  20. Aflaro AT, BalbinotE Weber CI, Tonial IV, Machado-Lunkes A (2015) Fish gelatin: characteristics, functional properties, applications and future potentials. Food Eng Rev 7:33–44. doi:10.1007/s12393-014-9096-5

    Article  CAS  Google Scholar 

  21. Rattanaruengsrikul V, Pimpha N, Supaphol P (2009) Development of gelatin hydrogel pads as antibacterial wound dressings. Macromol Biosci 9:1004–1015. doi:10.1002/mabi.200900131

    Article  CAS  PubMed  Google Scholar 

  22. Dille M, Hattrem MN, Draget KI (2017) Soft, chewable gelatin-based pharmaceutical oral formulations: a technical approach. Pharm Dev Technol 2:1–8. doi:10.1080/10837450.2017.1332642

    Article  CAS  Google Scholar 

  23. Han M-E, Kang BJ, Kim S-H, Kim HD, Hwang NS (2017) Gelatin-based extracellular matrix cryogels for cartilage tissue engineering. J Ind Eng Chem 45:421–429. doi:10.1016/j.jiec.2016.10.011

    Article  CAS  Google Scholar 

  24. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24:401–416. doi:10.1016/S0142-9612(02)00353-8

    Article  CAS  PubMed  Google Scholar 

  25. Hardy JG, Römer LM, Scheibel TR (2008) Polymeric materials based on silk proteins. Polymer 49:4309–4327. doi:10.1016/j.polymer.2008.08.006

    Article  CAS  Google Scholar 

  26. Aviv M, Berdicevsky I, Zilberman M (2007) Gentamicin-loaed bioresorbable films for prevention of bacterial infections associated with orthopedic implants. J Biomed Mater Res A 83:10–19. doi:10.1002/jbm.a.31184

    Article  CAS  PubMed  Google Scholar 

  27. Jacobsen F, Fisahn C, Sorkin M, Thiele I, Hirsch T, Stricker I, Klaassen T, Roemer A, Fugmann B, Steinstraesser L (2011) Efficacy of topically delivered moxifloxacin against wound infection by Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 55:2325–2334. doi:10.1128/AAC.01071-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jetbumpenkul P, Amornsudthiwat P, Kanokpanont S, Damrongsakkul S (2012) Balanced electrosatatic blending approach—an alternative to chemical crosslinking of Thai silk fibroin/gelatin scaffold. Int J Biol Macromolec 50:7–13. doi:10.1016/j.ijbiomac.2011.08.028

    Article  CAS  Google Scholar 

  29. Farris S, Song J, Huang Q (2010) Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde. J Agric Food Chem 58:996–1003. doi:10.1021/jf9031603

    Article  CAS  Google Scholar 

  30. Frutos P, Torrado S, Perez-Lorenzo ME, Frutos G (2000) A validated quantitative colorimetric assay for gentamicin. J Pharm Biomed Anal 21:1149–1159. doi:10.1016/S0731-7085(99)00192-2

    Article  CAS  PubMed  Google Scholar 

  31. Yannas IV, Lee E, Orgill DP, Skrabut EM, Murphy GF (1989) Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci USA 86:933–937

    Article  CAS  PubMed  Google Scholar 

  32. Zhou Q, Gong Y, Gao C (2005) Microstructure and mechanical properties of poly(L-lactide) scaffolds fabricated by gelatin particle leaching method. J Appl Polym Sci 98:1373–1379. doi:10.1002/app.22289

    Article  CAS  Google Scholar 

  33. Liu W, Chang J (2009) In vitro evaluation of gentamicin release from bioactive tricalcium silicate bone cement. Mater Sci Eng C 29:2486–2492. doi:10.1016/j.msec.2009.07.015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from Mae Fah Luang University, Professor Pitt Supaphol for being a mentor and Nano Characterization Laboratory: NCL, NANOTEC for indirect cytotoxicity evaluation. In addition, K. Kiti gratefully acknowledges the Royal Golden Jubilee Ph.D. scholarship (PHD/0043/2559), Thailand Research Fund (TRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orawan Suwantong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiti, K., Kudithalert, P., Waratrujiwong, T. et al. The potential use of gentamicin sulfate-loaded silk fibroin/gelatin blend scaffolds for wound dressing materials. Polym. Bull. 75, 2543–2558 (2018). https://doi.org/10.1007/s00289-017-2170-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2170-4

Keywords

Navigation