Skip to main content
Log in

Carbon fiber/epoxy composites: effect of zinc sulphide coated carbon nanotube on thermal and mechanical properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, composites based on carbon fiber and a modified epoxy resin were obtained. The modification on the polymeric matrix was performed by adding functionalized multi-walled carbon nanotubes coated with zinc sulphide particles (MWCNT-ZnS), synthetized by hydrothermal synthesis assisted by microwave. For comparison, samples containing only functionalized multi-walled carbon nanotubes (MWCNTf) were also tested. The influences on chemical, structural, mechanical, and thermal properties of the composites were evaluated. For the filler characterization, X-ray diffraction, transmission electronic microscopy, and Raman spectroscopy were used. The modified polymeric matrix was evaluated by thermogravimetric analysis and the mechanical evaluation of the carbon fiber laminated composites was made by tensile and impact tests. The results showed that the tensile strength and Young’s modulus of the composites increased with the presence of carbon nanofillers. The absorbed energy on impact had higher values for the composites modified with MWCNTf. It was verified that the samples containing MWCNTf-ZnS were more thermally stable, mainly due to the ZnS particles coating the MWCNTf surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhou HW, Mishnaevsky L, Yi HY et al (2016) Carbon fiber/carbon nanotube reinforced hierarchical composites: effect of CNT distribution on shearing strength. Compos Part B Eng 88:201–211. doi:10.1016/j.compositesb.2015.10.035

    Article  CAS  Google Scholar 

  2. Laurenzi S, Botti S, Rufoloni A, Santonicola MG (2014) Fracture mechanisms in epoxy composites reinforced with carbon nanotubes. Procedia Eng 88:157–164. doi:10.1016/j.proeng.2014.11.139

    Article  CAS  Google Scholar 

  3. Gardea F, Lagoudas DC (2014) Characterization of electrical and thermal properties of carbon nanotube/epoxy composites. Compos Part B Eng 56:611–620. doi:10.1016/j.compositesb.2013.08.032

    Article  CAS  Google Scholar 

  4. Vu CM, Nguyen TV, Nguyen LT, Choi HJ (2016) Fabrication of adduct filled glass fiber/epoxy resin laminate composites and their physical characteristics. Polym Bull 73:1373–1391. doi:10.1007/s00289-015-1553-7

    Article  CAS  Google Scholar 

  5. Gojny FH, Wichmann MHG, Fiedler B et al (2005) Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Compos Part A Appl Sci Manuf 36:1525–1535. doi:10.1016/j.compositesa.2005.02.007

    Article  Google Scholar 

  6. Guo J, Liu Y, Prada-Silvy R et al (2014) Aspect ratio effects of multi-walled carbon nanotubes on electrical, mechanical, and thermal properties of polycarbonate/MWCNT composites. J Polym Sci Part B Polym Phys 52:73–83. doi:10.1002/polb.23402

    Article  CAS  Google Scholar 

  7. Arash B, Wang Q, Varadan VK (2014) Mechanical properties of carbon nanotube/polymer composites. Sci Rep 4:1–8. doi:10.1038/srep06479

    Google Scholar 

  8. Liew KM, Lei ZX, Zhang LW (2015) Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Compos Struct 120:90–97. doi:10.1016/j.compstruct.2014.09.041

    Article  Google Scholar 

  9. He Y, Zhang L, Chen G et al (2014) Surface functionalized carbon nanotubes and its effects on the mechanical properties of epoxy based composites at cryogenic temperature. Polym Bull 71:2465–2485. doi:10.1007/s00289-014-1202-6

    Article  CAS  Google Scholar 

  10. Mittal G, Dhand V, Rhee KY et al (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25. doi:10.1016/j.jiec.2014.03.022

    Article  CAS  Google Scholar 

  11. Pozegic TR, Jayawardena KDGI, Chen JS et al (2016) Development of sizing-free multi-functional carbon fibre nanocomposites. Compos Part A Appl Sci Manuf 90:306–319. doi:10.1016/j.compositesa.2016.07.012

    Article  CAS  Google Scholar 

  12. Ma J, Larsen RM (2014) Effect of concentration and surface modification of single walled carbon nanotubes on mechanical properties of epoxy composites. Fibers Polym 15:2169–2174. doi:10.1007/s12221-014-2169-5

    Article  CAS  Google Scholar 

  13. Chen X, Wang J, Lin M et al (2008) Mechanical and thermal properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes. Mater Sci Eng A 492:236–242. doi:10.1016/j.msea.2008.04.044

    Article  Google Scholar 

  14. Lagoudas DC, Thakre PR, Bistrat Y (2010) Electrical and mechanical properties of carbon nanotube-epoxy nanocomposites. J Appl Polym Sci 116:191–202. doi:10.1002/app

    Article  Google Scholar 

  15. Yao H, Sui X, Zhao Z et al (2015) Optimization of interfacial microstructure and mechanical properties of carbon fiber/epoxy composites via carbon nanotube sizing. Appl Surf Sci 347:583–590. doi:10.1016/j.apsusc.2015.04.146

    Article  CAS  Google Scholar 

  16. Hwang JY, Kim HS, Kim JH et al (2015) Carbon Nanotube nanocomposites with highly enhanced strength and conductivity for flexible electric circuits. Langmuir 31:7844–7851. doi:10.1021/acs.langmuir.5b00845

    Article  CAS  Google Scholar 

  17. Zheng J, Zhang Q, He X et al (2012) Nanocomposites of carbon nanotube (CNTs)/CuO with high sensitivity to organic volatiles at room temperature. Procedia Eng 36:235–245. doi:10.1016/j.proeng.2012.03.036

    Article  CAS  Google Scholar 

  18. Osuntokun J, Ajibade PA (2016) Structural and thermal studies of ZnS and CdS nanoparticles in polymer matrices. J Nanomater. doi:10.1155/2016/3296071

    Google Scholar 

  19. Silvestre J, Silvestre N, De Brito J (2015) An overview on the improvement of mechanical properties of ceramics nanocomposites. J Nanomater. doi:10.1155/2015/106494

    Google Scholar 

  20. Du J, Fu L, Liu Z et al (2005) Facile route to synthesize multiwalled carbon nanotube/zinc sulfide heterostructures: optical and electrical properties. J Phys Chem B 109:12772–12776. doi:10.1021/jp051284i

    Article  CAS  Google Scholar 

  21. Agarwal S, Saxena NS, Kumar V (2015) Study on effective thermal conductivity of zinc sulphide/poly(methyl methacrylate) nanocomposites. Appl Nanosci 5:697–702. doi:10.1007/s13204-014-0365-7

    Article  CAS  Google Scholar 

  22. Goyanes S, Rubiolo GR, Salazar A et al (2007) Carboxylation treatment of multiwalled carbon nanotubes monitored by infrared and ultraviolet spectroscopies and scanning probe microscopy. Diam Relat Mater 16:412–417. doi:10.1016/j.diamond.2006.08.021

    Article  CAS  Google Scholar 

  23. Xue L, Shen C, Zheng M et al (2011) Hydrothermal synthesis of graphene-ZnS quantum dot nanocomposites. Mater Lett 65:198–200. doi:10.1016/j.matlet.2010.09.087

    Article  CAS  Google Scholar 

  24. Feng Y, Feng NN, Zhang GY, Du GX (2014) One-pot hydrothermal synthesis of ZnS-reduced graphene oxide composites with enhanced photocatalytic properties. CrystEngComm 16:214–222. doi:10.1039/c3ce41423j

    Article  CAS  Google Scholar 

  25. Bokobza L, Zhang J (2012) Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polym Lett 6:601–608. doi:10.3144/expresspolymlett.2012.63

    Article  CAS  Google Scholar 

  26. Ferrari AC, Robertson J (2004) Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos Trans R Soc A Math Phys Eng Sci 362:2477–2512. doi:10.1098/rsta.2004.1452

    Article  CAS  Google Scholar 

  27. Saito R, Hofmann M, Dresselhaus G et al (2011) Raman spectroscopy of graphene and carbon nanotubes. Adv Phys 60:413–550. doi:10.1080/00018732.2011.582251

    Article  CAS  Google Scholar 

  28. Guadagno L, De Vivo B, Di Bartolomeo A et al (2011) Effect of functionalization on the thermo-mechanical and electrical behavior of multi-wall carbon nanotube/epoxy composites. Carbon N Y 49:1919–1930. doi:10.1016/j.carbon.2011.01.017

    Article  CAS  Google Scholar 

  29. Yang Y, Xie X, Wu J et al (2006) Multiwalled carbon nanotubes functionalized by hyperbranched poly(urea-urethane)s by a one-pot polycondensation. Macromol Rapid Commun 27:1695–1701. doi:10.1002/marc.200600413

    Article  CAS  Google Scholar 

  30. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57. doi:10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  31. Bhalerao GM, Singh MK, Sinha AK, Ghosh H (2012) Optical redshift in the Raman scattering spectra of Fe-doped multiwalled carbon nanotubes: experiment and theory. Phys Rev B Condens Matter Mater Phys 86:1–6. doi:10.1103/PhysRevB.86.125419

    Google Scholar 

  32. Yang S-Y, Ma C-CM, Teng C-C et al (2010) Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites. Carbon N Y 48:592–603. doi:10.1016/j.carbon.2009.08.047

    Article  CAS  Google Scholar 

  33. Valentini F, Amine A, Orlanducci S et al (2003) {C}arbon {N}anotube {P}urification: {P}reparation and {C}haracterisation of {C}arbon {N}anotube {P}aste {E}lectrodes. Anal Chem 75:5413–5421. doi:10.1021/ac0300237

    Article  CAS  Google Scholar 

  34. Ado Jorio GD, Dresselhaus MS (2008) Carbon nanotubes. Mater Today. doi:10.1007/978-3-540-72865-8

    Google Scholar 

  35. Dresselhaus MS, Dresselhaus G (1981) Advances in physics intercalation compounds of graphite. Adv Phys 51:1–186. doi:10.1080/00018738100101367

    Article  Google Scholar 

  36. Echendu OK, Weerasinghe AR, Diso DG et al (2013) Characterization of n-type and p-type ZnS thin layers grown by an electrochemical method. J Electron Mater 42:692–700. doi:10.1007/s11664-012-2393-y

    Article  CAS  Google Scholar 

  37. Kamalakannan R, Ganesan K, Ilango S et al (2011) The role of structural defects on the transport properties of a few-walled carbon nanotube networks. Appl Phys Lett 98:2011–2014. doi:10.1063/1.3583583

    Article  Google Scholar 

  38. Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:1–4. doi:10.1103/PhysRevLett.97.187401

    Google Scholar 

  39. Moura LG, Moutinho MVO, Venezuela P et al (2017) The double-resonance Raman spectra in single-chirality (n, m) carbon nanotubes. Carbon N Y 117:41–45. doi:10.1016/j.carbon.2017.02.048

    Article  CAS  Google Scholar 

  40. Yoonessi M, Lebrón-Colón M, Scheiman D, Meador MA (2014) Carbon nanotube epoxy nanocomposites: the effects of interfacial modifications on the dynamic mechanical properties of the nanocomposites. ACS Appl Mater Interfaces 6:16621–16630. doi:10.1021/am5056849

    Article  CAS  Google Scholar 

  41. Ivanov E, Kotsilkova R, Krusteva E et al (2011) Effects of processing conditions on rheological, thermal, and electrical properties of multiwall carbon nanotube/epoxy resin composites. J Polym Sci Part B Polym Phys 49:431–442. doi:10.1002/polb.22199

    Article  CAS  Google Scholar 

  42. Mehl H, Matos CF, Neiva EGC, Domingues SH (2014) Efeito da variação de parâmetros reacionais na preparação de grafeno via oxidação e redução do grafite. Quim Nova 37:1639–1645

    CAS  Google Scholar 

  43. Lau K, Lu M, Lam Chun-ki et al (2005) Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites: the role of solvent for nanotube dispersion. Compos Sci Technol 65:719–725. doi:10.1016/j.compscitech.2004.10.005

    Article  CAS  Google Scholar 

  44. Subhani T, Latif M, Ahmad I et al (2015) Mechanical performance of epoxy matrix hybrid nanocomposites containing carbon nanotubes and nanodiamonds. Mater Des 87:436–444. doi:10.1016/j.matdes.2015.08.059

    Article  CAS  Google Scholar 

  45. Montazeri A, Javadpour J, Khavandi A et al (2010) Mechanical properties of multi-walled carbon nanotube/epoxy composites. Mater Des 31:4202–4208. doi:10.1016/j.matdes.2010.04.018

    Article  CAS  Google Scholar 

  46. Singh S, Srivastava VK, Prakash R (2015) Influences of carbon nanofillers on mechanical performance of epoxy resin polymer. Appl Nanosci 5:305–313. doi:10.1007/s13204-014-0319-0

    Article  CAS  Google Scholar 

  47. Zhang X, Fan X, Yan C et al (2012) Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide. ACS Appl Mater Interfaces 4:1543–1552. doi:10.1021/am201757v

    Article  CAS  Google Scholar 

  48. Zhao Z, Teng K, Li N et al (2017) Mechanical, thermal and interfacial performances of carbon fiber reinforced composites flavored by carbon nanotube in matrix/interface. Compos Struct 159:761–772. doi:10.1016/j.compstruct.2016.10.022

    Article  Google Scholar 

  49. Hossain M, Chowdhury M, Salam M et al (2014) Enhanced mechanical properties of carbon fiber/epoxy composites by incorporating XD-grade carbon nanotube. J Compos Mater 49:2251–2263. doi:10.1177/0021998314545186

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge CNPq (Process 482251/2013-1) and CAPES/PROCAD 2013/2998/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neftali Lenin Villarreal Carreno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maron, G.K., Noremberg, B.S., Alano, J.H. et al. Carbon fiber/epoxy composites: effect of zinc sulphide coated carbon nanotube on thermal and mechanical properties. Polym. Bull. 75, 1619–1633 (2018). https://doi.org/10.1007/s00289-017-2115-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2115-y

Keywords

Navigation