Skip to main content
Log in

Production of bionanocomposites based on poly(vinyl pyrrolidone) using modified TiO2 nanoparticles with citric acid and ascorbic acid and study of their physicochemical properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poly(vinyl pyrrolidone) (PVP) is a biocompatible, biodegradable, and hydrophilic polymer that has many applications in different fields. Reinforced PVP nanocomposites (NCs) containing titanium dioxide nanoparticles (TiO2 NPs) were prepared through solution casting method. To achieve better distribution of NPs in the polymeric bed, surface modification of NPs is essential. Citric acid (CA) and ascorbic acid (vitamin C) (VC) biomolecules were used as surface modifiers. Modified TiO2 NPs were incorporated in the PVP bed. X-ray diffraction, Fourier transforms infrared, transmission electron microscopy (TEM), and field-emission scanning electron microscopy were used to explore the resulted PVP/TiO2–CA–VC NCs. Thermal gravimetric analysis (TGA) was used to investigate thermal stability of PVP/TiO2–CA–VC NCs. TEM results showed that modified NPs were well distributed in the biopolymeric bed. TGA confirmed that thermal stability of NCs has been improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abdelghany AM, Abdelrazek EM, Rashad DS (2014) Impact of in situ preparation of CdS filled PVP nano-composite. Spectrochim Acta Part A Mol Biomol Spectrosc 130:302–308. doi:10.1016/j.saa.2014.04.049

    Article  CAS  Google Scholar 

  2. Cango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog Polym Sci 38:1232–1261. doi:10.1016/j.progpolymsci.2013.02.003

    Article  Google Scholar 

  3. Mallakpour S, Khadem E (2016) Chapter 16 recent achievements in the synthesis of biosafe poly(Vinyl Alcohol) nanocomposite. In: Inamuddin (ed) Green polymer composites technology: Properties and applications, CRC Press, Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742, pp 261–278. doi:10.1201/9781315371184-17

  4. Rashidi S, Ataie A (2016) Structural and magnetic characteristics of PVA/CoFe2O4 nano-composites prepared via mechanical alloying method. Mater Res Bull 80:321–328. doi:10.1016/j.materresbull.2016.04.021

    Article  CAS  Google Scholar 

  5. Dzˇunuzovic ES, Dzˇunuzovic JV, Marinkovic AD, Marinovic´-Cincovic´ MT, Jeremic´ KB, Nedeljkovic JM (2012) Influence of surface modified TiO2 nanoparticles by gallates on the properties of PMMA/TiO2 nanocomposites. Eur Polym J 48:1385–1393. doi:10.1016/j.eurpolymj.2012.05.017

    Article  Google Scholar 

  6. Mallakpour S and Behranvand V (2016) Chapter 24 grafted nano-ZnO, TiO2 by biosafe coupling agents and their applications for the green polymer nanocomposites fabrication. In: Inamuddin (ed) Green polymer composites technology: Properties and applications, CRC Press, Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742, pp 381–396. doi:10.1201/9781315371184-25

  7. Lu X, Lv X, Sun Z, Zheng Y (2008) Nanocomposites of poly(L-lactide) and surface-grafted TiO2 nanoparticles: synthesis and characterization. Eur Polym J 44:2476–2481. doi:10.1016/j.eurpolymj.2008.06.002

    Article  CAS  Google Scholar 

  8. Mallakpour S, Jarang N (2015) Exploration of the role of modified titania nanoparticles with citric acid and vitamin C in Improvement of thermal stability, optical property, and mechanical behavior of novel poly(vinyl chloride) nanocomposite films. J Vinyl Addit Technol. doi:10.1002/vnl.21526

    Google Scholar 

  9. Mallakpour S, Madani M (2015) A review of current coupling agents for modification of metal oxide nanoparticles. Prog Org Coat 86:194–207. doi:10.1016/j.porgcoat.2015.05.023

    Article  CAS  Google Scholar 

  10. Feng X, Xing W, Song L, Hu Y, Liew KM (2014) TiO2 loaded on graphene nanosheet as reinforcer and its effect on the thermal behaviors of poly(vinyl chloride) composites. Chem Eng J 260:524–531. doi:10.1016/j.cej.2014.08.103

    Article  Google Scholar 

  11. Deka BK, Maji TK (2011) Effect of TiO2 and nanoclay on the properties of wood polymer nanocomposite. Compos Part A Appl Sci Manuf 42:2117–2125. doi:10.1016/j.compositesa.2011.09.023

    Article  Google Scholar 

  12. Yuan JJ, Li HD, Wang QL, Yu Q, Zhang XK, Yu HJ, Xie YM (2012) Fabrication, characterization, and photocatalytic activity of double-layer TiO2 nanosheet films. Mater Lett 81:123–126. doi:10.1016/j.matlet.2012.04.145

    Article  CAS  Google Scholar 

  13. Zhao X, Wei G, Liu J, Wang Z, An C, Zhang J (2016) Synthesis of heterostructured Pd@TiO2/TiOF2 nanohybrids with enhanced photocatalytic performance. Mater Res Bull 80:337–343. doi:10.1016/j.materresbull.2016.04.018

    Article  CAS  Google Scholar 

  14. Qian J, Yin X, Wang N, Liu L, Xing J (2012) Preparation and tribological properties of stearic acid-modified hierarchical anatase TiO2 microcrystals. Appl Surf Sci 258:2778–2782. doi:10.1016/j.apsusc.2011.10.131

    Article  CAS  Google Scholar 

  15. Lu X, Lv X, Sun Z, Zheng Y (2008) Nanocomposites of poly(l-lactide) and surface-grafted TiO2 nanoparticles: synthesis and characterization. Eur Polym J 44:2476–2481. doi:10.1016/j.eurpolymj.2008.06.002

    Article  CAS  Google Scholar 

  16. Rahal R, Daniele S, Hubert-pfalzgraf LG, Guyot-ferréol V, Tranchant J (2008) Synthesis of para-amino benzoic acid–TiO2 hybrid nanostructures of controlled functionality by an aqueous one-step process. Eur J Inorg Chem 2008:980–987. doi:10.1002/ejic.200700971

    Article  Google Scholar 

  17. Zhu F, Kong E, Zhang J, Zhang Y (2006) Surface modification of TiO2 nanoparticles through plasma polymerization of acrylic acid. Chem Phys Lett 423:270–275. doi:10.1016/j.cplett.2006.03.076

    Article  CAS  Google Scholar 

  18. Ye W, Cheng T, Ye Q, Guo X, Zhang Z, Dang H (2003) Preparation and tribological properties of tetrafluorobenzoic acid-modified TiO2 nanoparticles as lubricant additives. Mater Sci Eng A 359:82–85. doi:10.1016/S0921-5093(03)00353-8

    Article  Google Scholar 

  19. Gao Y, Sun R, Zhang Z, Xue Q (2000) Tribological properties of oleic acid—modified TiO2 nanoparticle in water. Mater Sci Eng A 286:149–151 (275)

    Article  Google Scholar 

  20. Zhao J, Milanova M, Warmoeskerken M, Dutschk V (2012) Physicochemical and engineering aspects surface modification of TiO2 nanoparticles with silane coupling agents. Colloids Surf A Physicochem Eng Asp 13:273–279

    Article  Google Scholar 

  21. Mallakpour S, Moslemi S (2014) Surface functionalized TiO2 nanoparticle designed for the preparation of chiral Poly(amide-imide) bionanocomposites containing phenylalanine linkage. Syn Reac Inorg Met-Org Nano-Met Chem 440:185–190

    Article  Google Scholar 

  22. Mallakpour S, Aalizadeh R (2013) A simple and convenient method for the surface coating of TiO2 nanoparticles with bioactive chiral diacids containing different amino acids as the coupling agent. Prog Org Coat 76:648–653

    Article  CAS  Google Scholar 

  23. Zhang X, Cao Y, Yu S, Yang F, Xi P (2013) An electrochemical biosensor for ascorbic acid based on carbon-supported PdNinanoparticles. Biosens Bioelectron 44:183–190. doi:10.1016/j.bios.2013.01.020

    Article  Google Scholar 

  24. Rajh T, Nedeljkovic JM, Chen LX, Poluektov O, Thurnauer MC (1999) Improving optical and charge separation properties of nanocrystalline TiO2 by surface modification with vitamin C. J Phys Chem B 103:3515–3519. doi:10.1021/jp9901904

    Article  CAS  Google Scholar 

  25. Cheraghipour E, Javadpour S, Mehdizadeh AR (2012) Citrate capped superparamagnetic iron oxide nanoparticles used for hyperthermia therapy. J Biomed Sci Eng 5:715–719. doi:10.4236/jbise.2012.512089

    Article  Google Scholar 

  26. Amin RM, Elfeky SA, Verwanger T, Krammer B (2016) A new biocompatible nanocomposite as a promising constituent of sunscreens. Mater Sci Eng C. doi:10.1016/j.msec.2016.02.044

    Google Scholar 

  27. Chen JP, Wu S, Chong KH (2003) Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption. Carbon 41:1979–1986

    Article  CAS  Google Scholar 

  28. Trujillo-Reyes J, Vilchis-Nestor AR, Majumdar S, Peralta-Videa JR, Gardea-Torresdey JL (2013) Citric acid modifies surface properties of commercial CeO2 nanoparticles reducing their toxicity and cerium uptake in radish (Raphanus sativus) seedlings. J Hazard Mater 263:667–684. doi:10.1016/j.jhazmat.2013.10.030

    Article  Google Scholar 

  29. Ravi M, Kondamareddy K, Mohan VM, Rao VVNR (2014) Effect of nano TiO2 filler on the structural and electrical properties of PVP based polymer electrolyte films. Polym Test 33:152–160. doi:10.1016/j.polymertesting.2013.12.002

    Article  CAS  Google Scholar 

  30. Shi Y, Xiong D, Zhang J (2014) Effect of irradiation dose on mechanical and biotribological properties of PVA/PVP hydrogels as articular cartilage. Tribol Int 78:60–67. doi:10.1016/j.triboint.2014.05.001

    Article  CAS  Google Scholar 

  31. Zheng M, Jin Y, Jin G, Gu M (2000) Characterization of TiO2-PVP nanocomposites prepared by the sol-gel method. J Mater Sci Lett 19:433–436

    Article  CAS  Google Scholar 

  32. Wang W, Wang A (2010) Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly(sodium acrylate) and polyvinylpyrrolidone. Carbohydr Polym 80:1028–1036. doi:10.1016/j.carbpol.2010.01.020

    Article  CAS  Google Scholar 

  33. Bin D, Ren F, Wang H, Zhang K, Yang B, Zhai C, Zhu M, Yang P, Du Y (2014) Facile synthesis of PVP-assisted PtRu/RGO nanocomposites with high electrocatalytic performance for methanol oxidation. RSC Adv 4:39612. doi:10.1039/C4RA07742C

    Article  CAS  Google Scholar 

  34. Delbecq F, Kono F, Kawai T (2013) Preparation of PVP–PVA–exfoliated graphite cross-linked composite hydrogels for the incorporation of small tin nanoparticles. Eur Polym J 49:2654–2659. doi:10.1016/j.eurpolymj.2013.06.014

    Article  CAS  Google Scholar 

  35. Huma F, Akhter Z, Yasin T, Zaman M, Manan A (2014) Crosslinking of poly(N-vinyl pyrrolidone-co-n-butyl methacrylate) copolymers for controlled drug delivery. Polym Bull 71:433–451. doi:10.1007/s00289-013-1069-y

    Article  CAS  Google Scholar 

  36. Inal M, Erduran N (2015) Removal of various anionic dyes using sodium alginate/poly(N-vinyl-2-pyrrolidone) blend hydrogel beads. Polym Bull 72:1735–1752. doi:10.1007/s00289-015-1367-7

    Article  CAS  Google Scholar 

  37. Xiong Y, Washio I, Chen J, Cai H, Li ZY, Xia Y (2006) Poly(vinyl pyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir 22:8563–8570. doi:10.1021/la061323x

    Article  CAS  Google Scholar 

  38. Lubasova TLD, Niu H, Zhao X (2015) Hydrogel properties of electrospun polyvinylpyrrolidone and polyvinylpyrrolidone/poly(acrylic acid) blend nanofibers. RSC Adv 5:54481–54487. doi:10.1039/C5RA07514A

    Article  CAS  Google Scholar 

  39. Zou Y, Tan X, Yu T, Li Y, Wang R, Xue L (2016) Controllable preparation of flower-like brookite TiO2 nanostructures via one-step hydrothermal method. Mater Res Bull 80:237–242. doi:10.1016/j.materresbull.2016.04.007

    Article  CAS  Google Scholar 

  40. Mallakpour S, Mani L (2015) Novel polyvinylpyrrolidone nanocomposites with dispersed poly(amide-imide)/nano-ZrO2 as new nano-filler: morphology, thermal and optical properties. Polym Bull 72:2421. doi:10.1007/s00289-015-1416-2

    Article  CAS  Google Scholar 

  41. Mallakpour S, Behranvand V (2015) Novel ternary poly(vinyl pyrrolidone)/poly(amide-imide)/ZnO nanocomposite: synthesis, characterization, thermal and optical performance. Prog Org Coat 86:18–24. doi:10.1016/j.porgcoat.2015.03.004

    Article  CAS  Google Scholar 

  42. Mallakpour S, Naghdi M (2016) Fabrication and characterization of novel polyvinylpyrrolidone nanocomposites having SiO2 nanoparticles modified with citric acid and l(+)-ascorbic acid. Polymer 90:295–301. doi:10.1016/j.polymer.2016.03.029

    Article  CAS  Google Scholar 

  43. Mallakpour S, Jarang N (2015) Mechanical, thermal and optical properties of nanocomposite films prepared by solution mixing of poly(vinyl alcohol) with titania nanoparticles modified with citric acid and vitamin C. J Plast Film Sheeting. doi:10.1007/s13738-015-0760-3

    Google Scholar 

  44. Mallakpour S, Derakhsan F (2014) Opportunities and challenges in the Use of TiO2 nanoparticles modified with citric acid to synthesize advanced nanocomposites based on poly (amide-imide) containing N,N0-(Pyromellitoyl)-bis-l-leucine segments. Int J Polym Anal Charact 19:750–764

    Article  CAS  Google Scholar 

  45. Cheraghipour E, Javadpour S, Mehdizadeh AR (2012) Citrate capped superparamagneticiron oxide nanoparticles used for hyperthermia therapy. J Biomed Sci Eng 5:715–719

    Article  Google Scholar 

  46. Barmpalexis DBP, Koutsidis I, Karavas E, Louka D, Papadimitriou S (2013) Development of PVP/PEG mixtures as appropriate carriers for the preparation of drug solid dispersions by melt mixing technique and optimization of dissolution using artificial neural networks. Eur J Pharm Biopharm. doi:10.1016/j.ejpb.2013.03.013

    Google Scholar 

  47. Mallakpour S, Derakhshan F (2014) Functionalization of TiO2 nanoparticles with bio-safe poly(vinyl alcohol) to obtain new poly(amide-imide) nanocomposites containing N, N′-(pyromellitoyl)-bis-L-leucine linkages. High Perform Polym. doi:10.1177/0954008314555522

    Google Scholar 

  48. Mallakpour S, Khadem E (2014) A green route for the synthesis of novel optically active poly(amide-imide) nanocomposites containing N-trimellitylimido-l-phenylalanine segments and modified alumina nanoparticles. High Perform Polym 26:392–400. doi:10.1177/0954008313516820

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research project was supported by the Research Affairs Division Isfahan University of Technology (IUT), Isfahan, Iran, the National Elite Foundation (NEF), Iran, and Center of Excellence in Sensors and Green Chemistry Research (IUT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallakpour, S., Jarang, N. Production of bionanocomposites based on poly(vinyl pyrrolidone) using modified TiO2 nanoparticles with citric acid and ascorbic acid and study of their physicochemical properties. Polym. Bull. 75, 1441–1456 (2018). https://doi.org/10.1007/s00289-017-2100-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2100-5

Keywords

Navigation