Skip to main content
Log in

Designing vanadium pentoxide-carboxymethyl cellulose/polyvinyl alcohol-based bionanocomposite films and study of their structure, topography, mechanical, electrical and optical behavior

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the present work, thin films of carboxymethyl cellulose (CMC) and poly(vinyl alcohol) (PVA) were prepared by solution casting method and vanadium pentoxide (V2O5) was doped by in situ precipitation to yield CMC/PVA-V2O5 bionanocomposites. The materials were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), and Fourier transform infrared (FTIR) techniques and AC/DC conductivity, tensile strength, and microhardness measurements, and photo-luminescence (PL) and UV–Vis spectroscopic studies were conducted. The results of AFM and XRD studies provided information about morphology and crystalline features of the bionanocomposite film, respectively. The FTIR spectroscopy confirmed the presence of functional groups of the constituent polymers in the bionanocomposite and showed that V2O5 was successfully incorporated into CMC/PVA matrix. The AFM analysis of bionanocomposite films provided information about their morphology and roughness parameters. The PL spectroscopy indicated the appearance of blue shift after doping of V2O5 into the biopolymer film. The AC electrical conductivity was measured in the range 500–100,000 Hz and it was found that at room temperature the conductivity increases with frequency. Differential scanning calorimetry was used to look into the possible thermal transitions occurring in the bionanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Rao CNR, Raveau B (1995) Transition metal oxides: structure, properties and synthesis of ceramic oxides. Wiley, New York

    Google Scholar 

  2. Henrich VE, Cox PA (1994) The surface science of metal oxides. University Press, Cambridge

    Google Scholar 

  3. Swierkosz GB, Trifiro F, Vedrine JC (1997) Vanadia catalysts for selective oxidation of hydrocarbons and their derivatives. J Appl Catal 157:1–425

    Article  Google Scholar 

  4. Chain EE (1991) Optical properties of vanadium dioxide and vanadium pentoxide thin films. Appl Opt 30:2782–2787

    Article  CAS  Google Scholar 

  5. Patil CE, Tarwal NL, Shined PS, Deshmukh HP, Patil PS (2009) Synthesis of electrochromic vanadium oxide by pulsed spray pyrolysis technique and its properties. J Phys D Appl Phys 42:25404–25411

    Article  Google Scholar 

  6. Zhan S, Wei Y, Bie X, Wang C, Du F, Chen G, Hu F (2010) Structural and electrochemical properties of Al3+ doped V2O5 nanoparticles prepared by an oxalic acid assisted soft-chemical method. J Alloys Compd 502:92–96

    Article  CAS  Google Scholar 

  7. Carn F, Durupthy O, Fayolle B, Coradin T, Schmutz GMM, Maquet J, Livage J, Steuno N (2010) Assembling vanadium(V) oxide and gelatin into novel bionanocomposites with unexpected rubber-like properties. Chem Mater 22:398–408

    Article  CAS  Google Scholar 

  8. Chan CK, Peng H, Konrad RDT, Zhang JXF, Cui Y (2007) Fast, completely reversible Li insertion vanadium pentoxide nanoribbons. Nano Lett 7:490–495

    Article  CAS  Google Scholar 

  9. Comelio P, Lazzeri V, Waggle P (1996) Polym Prepr 37:17–21

    Google Scholar 

  10. Rawford RL (1981) Lignin biodegradation and transformation. Wiley, New York

    Google Scholar 

  11. Joshi GM, Khatake SM, Kaleemulla S, Rao NM, Teresa C (2011) Effect of dopant and DC bias potential on dielectric properties of polyvinyl alcohol (PVA)/PbTiO 3-composite films. Curr Appl Phys 11:1322–1325

    Article  Google Scholar 

  12. Fernandes DM, Andrade JL, Lima MK (2013) Thermal and photochemical effects on the structure, morphology, thermal and optical properties of PVA/Ni0.04Zn0.96O and PVA/Fe0.03Zn0.97O nanocomposite films. Polym Degrad Stab 98:1862–1868

    Article  CAS  Google Scholar 

  13. Mai L, Xu L, Han C, Xu X, Luo Y, Zhao S, Zhao Y (2010) Electrospun ultralong hierarchical vanadium oxide nanowires with high performance lithium ion batteries. Nano Lett 10:4750–4755

    Article  CAS  Google Scholar 

  14. West KBZ, Jacobsen T, Skaarup S (1993) Vanadium oxide xerogels as electrodes for lithium batteries. Electrochim Acta 38:1215–1220

    Article  CAS  Google Scholar 

  15. Cao AM, Hu JS, Liang HP, Wan LK (2005) Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew Chem Int 44:4391–4395

    Article  CAS  Google Scholar 

  16. McNaught AD, Blackwell WA (1997) IUPAC. Compendium of chemical terminology, 2nd edn. (the “Gold Book”). Scientific Publications, Oxford

  17. Jin Z, Li W, Cao H, Zhang X, Chen G, Wu H, Guo C, Zhang Y, Kang H, Wang Y, Zhao K (2013) Antimicrobial activity and cytotoxicity of N-2-HACC and characterization of nanoparticles with N-2-HACC and CMC as a vaccine carrier. Chem Eng J 221:331–341

    Article  CAS  Google Scholar 

  18. Ng H, Patey TJ, Büchel R, Krumeich F, Wang JZ, Liud HK, Pratsinis SE, Novák P (2009) Flame spray pyrolyzed vanadium oxide nanoparticles for lithium battery cathodes. Phys Chem Chem Phys 11:3748–3755

    Article  CAS  Google Scholar 

  19. Sieradzka K, Wojcieszak D, Kaczmarek D, Domaradzki J, Kiriakidis G, Aperathitis E, Kambilafka V, Frank Placido F (2011) Structural and optical properties of vanadium oxide prepared by microwave-assisted reactive magnetron sputtering. Opt Appl 2:463–469

    Google Scholar 

  20. Kumar NBR, Vincent Crasta V, Praveen BM (2014) Advancement in microstructure, optical, and mechanical properties of PVA (Mowiol 10-98) doped by ZnO nanoparticles. Phys Res Int 1591:493–502

    CAS  Google Scholar 

  21. Meyers RA, Coates J (2000) Interpretation of infrared spectra, a practical approach. Wiley, Chichester

    Google Scholar 

  22. Mansur HS, Orefice RL, Pereira MM, Lobato Z, Vasconcelos WL, Machado LJC (2002) FTIR and UV study of chemically engineered biomaterial surfaces for protein immobilization. Spectrosc-Int J 16:351–360

    Article  CAS  Google Scholar 

  23. Reis EFD, Campos FS, Lage AP, Leite RC, Heneine LG, Vasconcelos WL, Lobato ZIP, Mansur HS (2006) Synthesis and characterization of poly (vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption. Mater Res 9:185–191

    Article  Google Scholar 

  24. Huenin F, Giz MJ, Ticianelli A, Torresi RM (2001) Structure and properties of nanocomposite formed by vanadium pentoxide containing (N-propane sulfonic acid aniline). J Power Sources 103:113–119

    Article  Google Scholar 

  25. Yan Bao Y, Jianzhong M, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Poly 84:76–82

    Article  Google Scholar 

  26. Green RA, Toor H, Dodds C, Lovell NH (2012) Variation in performance of platinum electrodes with size and surface roughness. Sensors Mater 24:165–180

    CAS  Google Scholar 

  27. Piasecki R (2000) Coarsened lattice spatial disorder in the thermodynamic limit. Phys A, Stat Mech Appl 277:157–173

    Article  Google Scholar 

  28. El-Sayed S, Mahmoud KH, Fatah AA, Hassen A (2011) DSC, TGA and dielectric properties of carboxymethyl cellulose/polyvinyl alcohol blends. Phys B 406:4068–4076

    Article  CAS  Google Scholar 

  29. Kayaci F, Uyar T (2012) Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: prolonged shelf-life and high temperature stability of vanillin. F. Kayaci. Food Chem 133:641–649

    Article  CAS  Google Scholar 

  30. Balart R, Lopez J, Garc D, Salvador MD (2005) Recycling of ABS and PC from electrical and electronic waste. Effect of miscibility and previous degradation on final performance of industrial blends. Eur Polym J 41: 2150–2160

  31. Lewandowska K (2007) Thermal study of chitosan blends with vinyl polymers. Polish Chitin Society, Monograph, XII, pp 65–70

  32. Mondragon M, Arroyo K, Romero-Garcia J (2008) Biocomposites of thermoplastic starch with surfactant. Carbohydr Polym 74:201–208

    Article  CAS  Google Scholar 

  33. Mbhele ZH, Salemane MG, van Sittert CGCE, Nedeljković JM, Djoković V, Luyt AS (2003) Fabrication and characterization of silver−polyvinyl alcohol nanocomposites. Chem Mater 15:5019–5024

    Article  CAS  Google Scholar 

  34. Knauert ST, Douglas JFD, Starr FW (2007) The effect of nanoparticle shape on polymer-nanocomposite rheology and tensile strength. J Polym Sci Part B Polym Phys 45:1882–1897

    Article  CAS  Google Scholar 

  35. Austrell PE, Kari K, Balkema AA (2005) Constitutive models for rubber, IV. CRC Press, London

    Google Scholar 

  36. Sainsbury T, Gnaniah S, Spencer SJ, Mignuzzi S, Belsey NA, Paton KR, Satti A (2017) Extreme mechanical reinforcement in graphene oxide based thin-film nanocomposites Via covalently tailored nano filler matrix compatibilization. Carbon 114:367–376

    Article  CAS  Google Scholar 

  37. Parida UK, Nayak AK, Binhani BK, Nayak PL (2011) Synthesis and characterization of chitosan-polyvinyl alcohol blended with cloisite 30B for controlled release of the anticancer drug curcumin. J Biomater Nanobiotechnol 2:414–425

    Article  CAS  Google Scholar 

  38. Zhang S, Yongqing F, Hejun D, Liu Y, Chen T (2004) Nanocomposite thin films for both mechanical and functional applications. Adv Mater Micro- Nano-Syst (AMMNS) 1721:1

    Google Scholar 

  39. Garcia H, Nieto JML, Palomars E, Solsona B (2006) Laser flash photolysis of metal oxide supported vanadyl catalysts. Spectroscopic evidence for the ligand-to-metal charge-transfer state. J Mater Chem 16:216–220

    Article  CAS  Google Scholar 

  40. Alhareb AO, Akil HM, Ahmad ZA (2017) Impact strength, fracture toughness and hardness improvement of PMMA denture base through addition of nitrile rubber/ceramic fillers. Saudi J Dent Res 8:26–34

    Article  Google Scholar 

  41. Swain S, Sharma RA, Bhattacharya S, Chaudhary L (2013) Effects of nano-silica/nano-alumina on mechanical and physical properties of polyurethane composites and coatings. Trans Electr Electron Mater 14:1–8

    Article  Google Scholar 

  42. Abazari R, Sanati S, Saghatforousch LA (2014) Non-aggregate di vanadium pentoxide nanoparticles: a one step synthesis, morphological, structural compositional, optical and photocatalytic activities. Chem Eng J 236:82–90

    Article  CAS  Google Scholar 

  43. Avansi W, Maia LJQ, Ribeiro C, Leite ER, Mastelaro VR (2011) Local structure study of vanadium pentoxide 1D-nanostructures. J Nano Res 13:4937–4946

    Article  CAS  Google Scholar 

  44. Venkatesan A, Chandar NK, Arjunan S, Marimuthu KN, Kumar RMK, Jayavel R (2013) Structural, morphological and optical properties of highly monodispersed PEG capped V2O5 nanoparticles synthesized through a non-aqueous route. Mater Lett 91:228–231

    Article  CAS  Google Scholar 

  45. Scherer MR, Li L, Cunha PM, Scherman OA, Steiner U (2012) Enhanced electrochrominism in gyroid-structure vanadium pentoxide. Adv Mater 24:1217–1221

    Article  CAS  Google Scholar 

  46. Banerjee R, Jayakrishnan R, Banjeree R, Ayyub P (2000) Effect of size induced structural transformation on the band gap in CDS nanoparticles. J Phys Condens Mater 12:10647–10654

    Article  CAS  Google Scholar 

  47. Islam S, Ganaie M, Ahmad S, Siddiqui AM, Zulfequar M (2014) Dopant effect and characterization of poly (o-toluidine)/vanadium pentoxide composites prepared by in situ polymerization process. Int J Phys 2:105–122

    Article  Google Scholar 

  48. Tauc J, Grigirovici R, Vancu A (1996) Optical properties and electronic structure of amorphous germanium. Phys Status Solid 15:627–637

    Article  Google Scholar 

  49. Khan SA, Zulfequar M, Hussain M (2005) Optical band gap and optical constant in a Se 80 Te 20-x P-x thin film. Curr Appl Phys 5:583–587

    Article  Google Scholar 

  50. Al-Ramadhan Z (2008) Effect of nickel salt on electrical properties of polymethyl methacrylate, vol 3. Al-Mustansiriyah Uni, Iraq

    Google Scholar 

  51. Majdi KS, Fadhal HJ (1997) Electrica; conduction of PMMA and the effect of graphite addition. Univ Basrah Iraqi Polym 1:15–20

    Google Scholar 

  52. Olabisi O (1997) Hand book of thermoplastics. CRC Press, London

    Google Scholar 

  53. Harun MH, Saion E, Kassim A, Mahmud E, Shahrim I (2009) Dielectric properties of poly (vinyl alcohol)/ polypyrrole composite polymer films. J Adv Sci GARTS 1:9–14

    Google Scholar 

  54. Hill RM, Joscher AK (1979) DC and AC conductivity in hopping trans electronic system. J Non-Cryst Solids 32:53–69

    Article  CAS  Google Scholar 

  55. Brenig W, Dohler GH, Wolfle P (1975) Thermally assisted hopping transport in disordered system. Z Physik. 285:381–400

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Fozia Haq Naaz, MANIT, Bhopal (M.P.) India for the photoluminescence analysis and dielectric measurements, UGC-DAE, Indore for XRD measurements, Govt. Model Science College, Jabalpur (M.P.) India for FTIR measurements. The authors also express their gratitude to the Principal of Government Model Science College (Autonomous), Jabalpur, MP (India) for extending experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Bajpai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, A., Bajpai, A.K., Bajpai, J. et al. Designing vanadium pentoxide-carboxymethyl cellulose/polyvinyl alcohol-based bionanocomposite films and study of their structure, topography, mechanical, electrical and optical behavior. Polym. Bull. 75, 781–807 (2018). https://doi.org/10.1007/s00289-017-2067-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2067-2

Keywords

Navigation