Skip to main content
Log in

Synthesis and swelling behavior of metal-chelating superabsorbent hydrogels based on sodium alginate-g-poly(AMPS-co-AA-co-AM) obtained under microwave irradiation

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A metal-chelating superabsorbent hydrogel based on poly(2-acrylamido-2-methylpropanesulfonic acid-co-acrylic acid-co-acrylamide) grafted onto sodium alginate backbone, NaAlg-g-poly(AMPS-co-AA-co-AM) is prepared under microwave irradiation. The Taguchi method is used for the optimization of synthetic parameters of the hydrogel based on water absorbency. The Taguchi L9 (34) orthogonal array is chosen for experimental design. Mass concentrations of crosslinker MBA \(C_{\text{MBA}}\) initiator KPS \(C_{\text{KPS}}\), sodium alginate \(C_{\text{NaAlg}}\) and mass ratio of monomers \(C_{\text{AM/AA/AMPS}}\) are chosen as four factors. The analysis of variance of the test results indicates the following optimal conditions: 0.8 g L−1 of MBA, 0.9 g L−1 of KPS, 8 g L−1 of NaAlg and \(R_{\text{AM/AA/AMPS}}\) equals to 1:1.1:1.1. The maximum water absorbency of the optimized final hydrogel is found to be 822 g g−1. The relative thermal stability of the optimized hydrogel in comparison with sodium alginate is demonstrated via thermogravimetric analysis. The prepared hydrogel is characterized by FTIR spectroscopy and scanning electron microscopy. The influence of the environmental parameters on water absorbency such as the pH and the ionic force is also investigated. The optimized hydrogel is used as adsorbent for hazardous heavy metal ions Pb(II), Cd(II), Ni(II) and Cu(II) and their competitive adsorption is also discussed. Isotherm of adsorption and effect of pH, adsorption dosage and recyclability are investigated. The results show that the maximum adsorption capacities of lead and cadmium ions on the hydrogel are 628.93 and 456.62 mg g−1, respectively. The adsorption is well described by Langmuir isotherm model. The hydrogel is also utilized for the loading of potassium nitrate as an active agrochemical agent and the release of this active agent has also been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Chen Q, Zhu L, Zhao C, Zheng J (2012) Hydrogels for removal of heavy metals from aqueous solution. J Environ Anal Toxicol S2:1–4

    Google Scholar 

  2. Charerntanyarak L (1999) Heavy metals removal by chemical coagulation and precipitation. Water Sci Technol 39:135–138

    CAS  Google Scholar 

  3. Huang SY, Fan CS, Hou CH (2014) Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization. J Hazard Mater 278:8–15

    Article  CAS  Google Scholar 

  4. Dabrowski A, Hubicki Z, Podko′scielny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56:91–106

    Article  CAS  Google Scholar 

  5. Vijayalakshmi A, Arockiasam DL, Nagendran A, Mohan D (2008) Separation of proteins and toxic heavy metal ions from aqueous solution by CA/PC blend ultrafiltration membranes. Sep Purif Technol 62:32–38

    Article  CAS  Google Scholar 

  6. Showkat AM, Zhang YP, Kim MS, Gopalan AI, Reddy KR, Lee KP (2007) Analysis of heavy metal toxic ions by adsorption onto amino-functionalized ordered mesoporous silica. Bull Kor Chem Soc 28(11):1985–1992

    Article  CAS  Google Scholar 

  7. Bulut Y, Akcay G, Elma D, Serhatli E (2009) Synthesis of clay-based superabsorbent composite and its sorption capability. J Hazard Mater 171:717–723

    Article  CAS  Google Scholar 

  8. Peng N, Wang Y, Ye Q, Liang L, An Y, Li Q (2016) Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity. Carbohydr Polym 137:59–64

    Article  CAS  Google Scholar 

  9. Shi Y, Xue Z, Wang X, Wang L, Wang A (2013) Removal of methylene blue from aqueous solution by sorption on lignocelluloses–g-poly(acrylic acid)/montmorillonite three-dimensional cross-linked polymeric network hydrogels. Polym Bull 70:1163–1179

    Article  CAS  Google Scholar 

  10. Soleyman R, Pourjavadi A, Monfared A, Khorasani Z (2016) Novel salep-based chelating hydrogel for heavy metal removal from aqueous solutions. Polym Adv Technol 27(8):999–1005

    Article  CAS  Google Scholar 

  11. Zhu Y, Zheng Y, Wang A (2015) Preparation of granular hydrogel composite by the redox couple for efficient and fast adsorption of La(III) and Ce(III). J Environ Chem Eng 3(2):1416–1425

    Article  CAS  Google Scholar 

  12. Rivas B, Schiappacasse N (2003) Poly(acrylic acid-co-vinylsulfonic acid): synthesis, characterization, and properties as polychelatogen. J Appl Polym Sci 88:1698–1704

    Article  CAS  Google Scholar 

  13. Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97:219–243

    Article  CAS  Google Scholar 

  14. Erdem E, Karapinar N, Donat R (2004) The removal of heavy metal cations by natural zeolites. J Colloid Interface Sci 280:309–314

    Article  CAS  Google Scholar 

  15. El-Hag Ali A (2012) Removal of heavy metals from model wastewater by using carboxymethyl cellulose/2-acrylamido-2-methyl propane sulfonic acid hydrogels. J Appl Polym Sci 123:763–769

    Article  CAS  Google Scholar 

  16. Zhao F, Qin X, Feng S (2016) Preparation of microgel/sodium alginate composite granular hydrogels and their Cu2+ adsorption properties. RSC Adv 6(102):100511–100518

    Article  CAS  Google Scholar 

  17. Kalaleh HA, Tally M, Atassi Y (2013) Preparation of a clay based superabsorbent polymer composite of copolymer poly(acrylate-co-acrylamide) with bentonite via microwave radiation. Res Rev Polym 4:145–150

    CAS  Google Scholar 

  18. Tally M, Atassi Y (2015) Optimized Synthesis and swelling properties of a pH-sensitive semi-IPN superabsorbent polymer based on sodium alginate-g-poly(acrylic acid-co-acrylamide) and polyvinylpyrrolidone and obtained via microwave irradiation. J Polym Res 22(9):1–13

    Article  CAS  Google Scholar 

  19. Kalaleh HA, Tally M, Atassi Y (2015) Optimization of the preparation of bentonite-g-poly(acrylate-co-acrylamide) superabsorbent polymer composite for agricultural applications. Polym Sci Ser B 57(6):750–758

    Article  CAS  Google Scholar 

  20. Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymers materials: a review. Iran Polym J 17:451–477

    CAS  Google Scholar 

  21. El-Sayed M, Sorour M, AbdElMoneem N, Talaat H, Shalaan H, ElMarsafy S (2011) Synthesis and properties of natural polymers-grafted-acrylamide. World Appl Sci J 13:360–368

    CAS  Google Scholar 

  22. Ghasemzadeh H, Ghanaat F (2014) Antimicrobial alginate/PVA silver nanocomposite hydrogel, synthesis and characterization. J Polym Res 21:355–368

    Article  Google Scholar 

  23. Jeng YT (2015) Preparation and characterization of controlled release fertilizers using alginate-based superabsorbent polymer for plantations in Malaysia. Master thesis, University Tunku Abdul Rahman, Malaysia

  24. Rashidzadeh A, Olad A, Salari D, Reyhanitabar A (2014) On the preparation and swelling properties of hydrogel nanocomposite based on sodium alginate-g-poly(acrylic acid-co-acrylamide)/clinoptilolite and its application as slow release fertilizer. J Polym Res 21:344–359

    Article  Google Scholar 

  25. Huang M, Shen X, Sheng Y, Fang Y (2005) Study of graft copolymerization of N-maleamic acid-chitosan and butyl acrylate by γ-ray irradiation. Int J Biol Macromol 36:98–102

    Article  CAS  Google Scholar 

  26. Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84:76–82

    Article  CAS  Google Scholar 

  27. Tally M, Atassi Y (2016) Synthesis and characterization of pH-sensitive superabsorbent hydrogels based on sodium alginate-g-poly(acrylic acid-co-acrylamide) obtained via an anionic surfactant micelle templating under microwave irradiation. Polym Bull 22(9):1–26

    Google Scholar 

  28. Spagnol C, Rodrigues FHA, Neto AGVC, Pereira AGB, Fajardo AR, Radovanovic E, Rubira AF, Muniz EC (2012) Nanocomposites based on poly (acrylamide-co-acrylate) and cellulose nanowhiskers. Eur Polym J 48:454–463

    Article  CAS  Google Scholar 

  29. Wang W, Wang A (2010) Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly(sodium acrylate) and polyvinylpyrrolidone. Carbohydr Polym 80:1028–1036

    Article  CAS  Google Scholar 

  30. Hua S, Wang A (2009) Synthesis, characterization and swelling behaviors of sodium alginate-g-poly(acrylic acid)/sodium humate superabsorbent. Carbohydr Polym 75:79–84

    Article  CAS  Google Scholar 

  31. Işiklan N, Küçükbalcı G (2012) Microwave-induced synthesis of alginate-graft-poly(N-isopropylacrylamide) and drug release properties of dual pH- and temperature-responsive beads. Eur J Pharmacol Biopharm 82:316–331

    Article  Google Scholar 

  32. Lim DW, Yoon KJ, Ko SW (2000) Synthesis of AA-based superabsorbent interpenetrated with sodium PVA sulfate. J Appl Polym Sci 78(14):2525–2532

    Article  CAS  Google Scholar 

  33. Poorna KSVC, Singh A, Rathore A, Kumar A (2016) Novel cross linked guar gum-g-poly(acrylate) porous superabsorbent hydrogels: characterization and swelling behaviour in different environments. Carbohydr Polym 149:175–185

    Article  Google Scholar 

  34. Pourjavadi A, Amini-Fazl MS, Ayyari M (2007) Optimization of synthetic conditions CMC-g-poly (acrylic acid)/Celite composite superabsorbent by Taguchi method and determination of its absorbency under load. Express Polym Lett 1(8):488–494

    Article  CAS  Google Scholar 

  35. Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19(5):375–398

    CAS  Google Scholar 

  36. Lanthong P, Kiatkamjornwong S (2006) Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbodydr Polym 66:229–245

    Article  CAS  Google Scholar 

  37. Gils PS, Ray D, Mohanta GP, Manavalan R, Sahoo PK (2009) Designing of new acrylic based macroporous superabsorbent polymer hydrogel and its suitability for drug delivery. Int J Pharm Pharm Sci 1:43–54

    Google Scholar 

  38. Hosseinzadeh H, Sadeghzadeh M, Badazadeh M (2011) Preparation and properties of carrageenan-g-poly(acrylic acid)/bentonite superabsorbent composite. J Boimater Nanobiotechnol 2:311–317

    Article  CAS  Google Scholar 

  39. Schott H (1992) Swelling kinetics of polymers. J Macromol Sci B 31:1–9

    Article  CAS  Google Scholar 

  40. Ashraf MU, Hussain MA, Muhammad G, Haseeb MT, Bashir S, Hussain SZ, Hussain I (2017) A superporous and superabsorbent glucuronoxylan hydrogel from quince (Cydonia oblanga): stimuli responsive swelling, on-off switching and drug release. Int J Biol Macromol 95:138–144

    Article  CAS  Google Scholar 

  41. Bulut Y, Gözübenli N, Aydin H (2007) Equilibrium and kinetics studies for adsorption of direct blue 71 from aqueous solution by wheat shells. J Hazard Mater 144:300–306

    Article  CAS  Google Scholar 

  42. Mahdavinia GR, Mousavi SB, Karimi F, Marandi GB, Garabaghi H, Shahabvand S (2009) synthesis of porous poly (acrylamide) hydrogels using calcium carbonate and its application for slow release of potassium nitrate. Express Polym Lett 3:279–285

    Article  CAS  Google Scholar 

  43. Kim SW, Bae YH, Okano T (1992) Hydrogels: swelling, drug loading, and release. Pharm Res 9:283–290

    Article  CAS  Google Scholar 

  44. Bajpai AK, Giri A (2002) Swelling dynamics of a macromolecular hydrophilic network and evaluation of its potential for controlled release of agrochemicals. React Funct Polym 53(2):125–141

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yomen Atassi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad, N., Atassi, Y. & Tally, M. Synthesis and swelling behavior of metal-chelating superabsorbent hydrogels based on sodium alginate-g-poly(AMPS-co-AA-co-AM) obtained under microwave irradiation. Polym. Bull. 74, 4453–4481 (2017). https://doi.org/10.1007/s00289-017-1967-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-1967-5

Keywords

Navigation