Skip to main content
Log in

Numerical investigation of three-dimensional fiber suspension flow by using finite volume method

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Fiber suspension flow is common in many industrial processes like papermaking and fiber-reinforcing polymer-based material forming. The investigation of the mechanism of fiber suspension flow is of significant importance, since the orientation distribution of fibers directly influences the mechanical and physical properties of the final products. A numerical methodology based on the finite volume method is presented in the study to simulate three-dimensional fiber suspension flow within complex flow field. The evolution of fiber orientation is described using different formulations including FT model and RSC model. The pressure implicit with splitting of operators algorithm is adopted to avoid oscillations in the calculation. A laminate structure of fiber orientation including the shell layer, the transition layer and the core layer along radial direction within a center-gated disk flow channel is predicted through a three-dimensional simulation, which agrees well with Mazahir’s experimental results. The evolution of fiber orientation during the filling process within the complex flow field is further discussed. The mathematical model and numerical method proposed in the study can be successfully adopted to predict fiber suspension flow patterns and hence to reveal the fiber orientation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\( \varvec{p} \) :

Fiber orientation vector

\( \varvec{u} \) :

Velocity vector

\( \nabla \) :

Hamilton differential operator

\( \dot{\varvec{p}} \) :

Fiber angular velocity vector

\( \varvec{w} \) :

Vorticity tensor

\( \varvec{d} \) :

Deformation rate tensor

\( C_{I} \) :

Interaction coefficient

\( \dot{\gamma } \) :

Shear rate

\( \lambda \) :

Particle geometrical parameter

\( \varvec{a} \) :

Second-order orientation tensor

\( \varvec{A} \) :

Fourth-order orientation tensor

\( \kappa \) :

Strain reduction factor

\( \rho \) :

Material density

\( \varvec{\tau} \) :

Extra stress tensor

\( p \) :

Hydrostatic pressure

\( c_{p} \) :

Heat capacity

\( k \) :

Heat conductivity

\( \eta_{n} \) :

Non-Newtonian viscosity

\( N_{p} \) :

Particle number

\( \varphi \) :

Volume fraction

References

  1. Xu HJ, Aidun CK (2005) Characteristics of fiber suspension flow in a rectangular channel. Int J Multiph Flow 31:318–336

    Article  CAS  Google Scholar 

  2. Yasuda K, Henmi S, Mori N (2005) Effects of abrupt expansion geometries on flow-induced fiber orientation and concentration distributions in slit channel flows of fiber suspensions. Polym Compos 26:660–670

    Article  CAS  Google Scholar 

  3. Heath SJ, Olson JA, Buckley KR, Lapi S, Ruth TJ, Martinez DM (2007) Visualization of the flow of a fiber suspension through a sudden expansion using PET. AIChE J 53:327–334

    Article  CAS  Google Scholar 

  4. Sharifi F, Azaiez J (2005) Vortex dynamics of fiber-laden free shear flows. J Non Newton Fluid Mech 127:73–87

    Article  CAS  Google Scholar 

  5. Zhang HP, Ouyang J, Zhang L, Zheng SP (2008) Multi-scale mathematic modeling of non-isothermal polymeric flow of fiber suspensions. Comput Chem Eng 32:1523–1532

    Article  CAS  Google Scholar 

  6. Yamanoi M, Leer C, van Hattum FWJ, Carneiro OS, Maia JM (2010) Direct fiber simulation of carbon nanofibers suspensions in a Newtonian fluid under simple shear. J Colloid Interface Sci 347:183–191

    Article  CAS  Google Scholar 

  7. Ku XK, Lin JZ (2008) Fiber orientation distributions in slit channel flows with abrupt expansion for fiber suspensions. J Hydrodyn 20:696–705

    Article  Google Scholar 

  8. Lu ZM, Khoo BC, Dou HS, Phan-Thien N, Yeo KS (2006) Numerical simulation of fiber suspension flow through an axisymmetric contraction and expansion passages by Brownian configuration field method. Chem Eng Sci 61:4998–5009

    Article  CAS  Google Scholar 

  9. Moosaie A, Duc AL, Manhart M (2010) Numerical simulation of flow-induced fiber orientation using normalization of second moment. J Non Newton Fluid Mech 165:9–10

    Article  Google Scholar 

  10. Advani SG, Tucker CL (1987) The use of tensors to describe and predict fiber orientation in short fiber composites. J Rheol 31(8):751–784

    Article  CAS  Google Scholar 

  11. Folgar F, Tucker CL (1984) Orientation behavior of fibers in concentrated suspensions. J Reinf Plast Compos 3(2):98–119

    Article  CAS  Google Scholar 

  12. Sepehr M, Ausias G, Carreau PJ (2004) Rheological properties of short fiber filled polypropylene in transient shear flow. J Non Newton Fluid Mech 123(1):19–32

    Article  CAS  Google Scholar 

  13. Wang J, Tucker CL, O’Gara JF (2008) An objective model for slow orientation kinetics in concentrated fiber suspensions: theory and rheological evidence. J Rheol 52:1179–1200

    Article  CAS  Google Scholar 

  14. Advani SG, Tucker CL III (1990) Closure approximations for three-dimensional structure tensor. J Rheol 34:367–386

    Article  Google Scholar 

  15. Rajabian M, Dubois C, Grmela M (2005) Suspensions of semiflexible fibers in polymeric fluids: rheology and thermodynamics. Rheol Acta 44:521–535

    Article  CAS  Google Scholar 

  16. Dinh SM, Armstrong RC (1984) A rheological equation of state for semiconcentrated fiber suspensions. J Rheol 28:207–227

    Article  CAS  Google Scholar 

  17. Mu Y, Zhao GQ, Chen AB, Wu XH (2012) Numerical investigation of the thermally and flow induced crystallization behavior of semi-crystalline polymers by using finite element-finite difference method. Comput Chem Eng 46:190–204

    Article  CAS  Google Scholar 

  18. Issa RI (1986) Solution of implicitly discretized fluid flow equations by operator splitting. J Comput Phys 62(1):40–65

    Article  Google Scholar 

  19. Meijerink JA, van der Vorst HA (1977) An iteration solution method for linear systems of which the coefficient matrix is a symmetric M-Matrix. Math Comput 31(137):148–162

    Google Scholar 

  20. van der Vorst HA (1992) Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13(2):631–644

    Article  Google Scholar 

  21. Mazahir SM, Vélez-García GM, Wapperom P, Baird D (2013) Evolution of fiber orientation in radial direction in a center-gated disk: experiment and simulation. Compos A 51:108–117

    Article  CAS  Google Scholar 

  22. Mazahir SM, Vélez-Garcí GM, Wapperom P, Baird D (2015) Fiber orientation in the frontal region of a center-gated disk: experiments and simulation. J Non Newton Fluid Mech 216:31–44

    Article  CAS  Google Scholar 

  23. Vélez-García GM, Wapperom P, Baird DG, Aning AO, Kunc V (2012) Unambiguous orientation in short fiber composites over small sampling area in a center-gated disk. Compos A 43(1):104–113

    Article  Google Scholar 

  24. Bright PF, Crowson RJ, Folkes MJ (1978) A study of the effect of injection speed on fiber orientation in simple mouldings of short glass fiber-filled polypropylene. J Mater Sci 13(11):2497–2498

    Article  CAS  Google Scholar 

  25. Bay RS, Tucker CL III (1992) Fiber orientation in simple injection moldings. Part II: experimental results. Polym Compos 13:332–341

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Natural Science Foundation of China (No. 51675308), the Natural Science Foundation of China (No. 51205231) and the Natural Science Foundation of Shandong Province (No. ZR2012EEQ001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Mu or Guoqun Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, Y., Zhao, G., Chen, A. et al. Numerical investigation of three-dimensional fiber suspension flow by using finite volume method. Polym. Bull. 74, 4393–4414 (2017). https://doi.org/10.1007/s00289-017-1960-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-1960-z

Keywords

Navigation