Skip to main content
Log in

Tensile properties and deformation mechanisms of PU/MWCNTs nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the mechanical properties and deformation mechanisms of thermoset polyurethane reinforced with different contents of multi-walled carbon nanotubes, i.e. 0.05–5 wt%, fabricated through a solution casting method. Tensile test was done at constant strain rate and different temperatures and Halpin–Tsai equation was used to compare the experimental results with theoretical predictions. Results showed that modulus, strength and toughness of polyurethane depended strongly on the amount of CNTs loading. Tensile strength of PU was enhanced approximately 122% by the contribution of 1 wt% CNTs at room temperature. Predictions of tensile strength by modified Halpin–Tsai equation were in good agreement with the experimental data. Microscopic observations showed that MWCNTs dispersed homogeneously throughout the PU matrix up to 1 wt% CNTs; but evidences of agglomeration were found at higher contents. Finally, dominant toughening mechanisms of PU/CNTs nanocomposites were considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tijing LD, Park CH, Choi WL, Ruelo MTG, Amarjargal A, Pant HR, Im IT, Kim CS (2013) Characterization and mechanical performance comparison of multiwalled carbon nanotube/polyurethane composites fabricated by electrospinning and solution casting. Compos Part B 44:613–619

    Article  CAS  Google Scholar 

  2. Wernik JM, Meguid SA (2010) Recent developments in multifunctional nanocomposites using carbon nanotubes. Appl Mech Rev 63:050801-1–050801-40

    Article  Google Scholar 

  3. Jung YC, Yoo HJ, Kim YA, Cho JW, Endo M (2010) Electroactive shape memory performance of polyurethane composite having homogeneously dispersed and covalently crosslinked carbon nanotubes. Carbon 48:1598–1603

    Article  CAS  Google Scholar 

  4. Mahapatra SS, Yadav SK, Yoo HJ, Cho JW, Park JS (2013) Highly branched polyurethane: synthesis, characterization and effects of branching on dispersion of carbon nanotubes. Compos Part B 45:165–171

    Article  CAS  Google Scholar 

  5. Karabanova LV, Whitby RLD, Korobeinyk A, Bondaruk O, Salvage JP, Lloyd AW, Mikhalovsky SV (2012) Microstructure changes of polyurethane by inclusion of chemically modified carbon nanotubes at low filler contents. Comp Sci Technol 72:865–872

    Article  CAS  Google Scholar 

  6. Barick AK, Tripathy DK (2011) Preparation, characterization and properties of acid functionalized multi-walled carbon nanotube reinforced thermoplastic polyurethane nanocomposites. Mater Sci Eng B 176:1435–1447

    Article  CAS  Google Scholar 

  7. Arlas BF, Khan U, Rueda L, Coleman JN, Mondragon I, Corcuera MA, Eceiza A (2011) Influence of hard segment content and nature on polyurethane/multiwalled carbon nanotube composites. Comp Sci Technol 71:1030–1038

    Article  Google Scholar 

  8. Loos MR, Yang J, Feke DL, Manas-Zloczower I, Unal S, Younes U (2013) Enhancement of fatigue life of polyurethane composites containing carbon nanotubes. Compos Part B 44:740–744

    Article  CAS  Google Scholar 

  9. Cipriani E, Zanetti M, Brunella V, Costa L, Bracco P (2012) Thermoplastic polyurethanes with polycarbonate soft phase: effect of thermal treatment on phase morphology. Polym Degrad Stab 97:1794–1800

    Article  CAS  Google Scholar 

  10. Hood MA, Wang B, Sands JM, La Scala JJ, Beyer FL, Li CY (2010) Morphology control of segmented polyurethanes by crystallization of hard and soft segments. Polymer 51:2191–2198

    Article  CAS  Google Scholar 

  11. Madkour TM, Hagag FM, Mamdouh W, Azzam RA (2012) Molecular-level modeling and experimental investigation into the high performance nature and low hysteresis of thermoplastic polyurethane/multi-walled carbon nanotube nanocomposites. Polymer 53:5788–5797

    Article  CAS  Google Scholar 

  12. Lima AMF, De Castro VG, Borges RS, Silva GG (2012) Electrical conductivity and thermal properties of functionalized carbon nanotubes/polyurethane composites. Polímeros 22:117–124

    Article  CAS  Google Scholar 

  13. Deka H, Karak N, Kalita RD, Buragohain AK (2010) Biocompatible hyperbranched polyurethane/multi-walled carbon nanotube composites as shape memory materials. Carbon 48:2013–2022

    Article  CAS  Google Scholar 

  14. Xiong J, Zheng Z, Qin X, Li M, Li H, Wang X (2006) Thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite. Carbon 44:2701–2707

    Article  CAS  Google Scholar 

  15. Kuan HC, Ma CCM, Chang WP, Yuen SM, Wu HH, Lee TM (2005) Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Comp Sci Technol 65:1703–1710

    Article  CAS  Google Scholar 

  16. Quaresimin M, Schulte K, Zappalorto M, Chandrasekaran S (2016) Toughening mechanisms in polymer nanocomposites: from experiments to modeling. Compos Sci Technol 123:187–204

    Article  CAS  Google Scholar 

  17. Arruda EM, Boyce MC, Jayachandran R (1995) Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers. Mech Mater 19:193–212

    Article  Google Scholar 

  18. Richeton J, Ahzi S, Vecchio KS, Jiang FC, Adharapurapu RR (2006) Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: characterization and modeling of the compressive yield stress. Int J Solids Struct 43:2318–2335

    Article  CAS  Google Scholar 

  19. Zhang LH, Yao XH, Zang SG, Han Q (2015) Temperature and strain rate dependent tensile behavior of a transparentpolyurethane interlayer. Mater Des 65:1181–1188

    Article  CAS  Google Scholar 

  20. Loos M (2015) Carbon nanotube reinforced composites. Elesevier, Amsterdam

    Google Scholar 

  21. Bokobza L (2007) Multiwall carbon nanotube elastomeric composites: a review. Polymer 48:2907–2920

    Article  Google Scholar 

  22. Affdl J, Kardos J (1976) The Halpin–Tsai equations: a review. Polym Eng Sci 16:344–352

    Article  Google Scholar 

  23. Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Synthesis of polyurethane nanocomposites of functionalized carbon nanotubes by in situ polymerization methods. Prog Polym Sci 35:837–867

    Article  CAS  Google Scholar 

  24. Moghim MH, Zebarjad SM (2016) Effect of strain rate on tensile properties of polyurethane/(multiwalled carbon nanotube) nanocomposite. J Vinyl add Technol 22:356–361

    Article  CAS  Google Scholar 

  25. Eqra R, Janghorban K, Daneshmanesh H (2015) Mechanical properties and toughening mechanism of epoxy/graphene nanocomposites. J Polym Eng 35:257–266

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mojtaba Zebarjad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghim, M.H., Zebarjad, S.M. Tensile properties and deformation mechanisms of PU/MWCNTs nanocomposites. Polym. Bull. 74, 4267–4277 (2017). https://doi.org/10.1007/s00289-017-1955-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-1955-9

Keywords

Navigation