Skip to main content
Log in

Synthesis of citric-acid-based dendrimers decorated with ferrocenyl groups and investigation of their electroactivity

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Fc (ferrocene)-functionalized citric acid dendrimers were successfully synthesized via the reaction of citric acid dendrimers with ferrocene methanol using dicyclohexylcarbodiimide. ClOC–PEG–COCl was used as the core, and the related dendrimers were synthesized divergently. Subsequently, each generation was functionalized with ferrocene methanol. The obtained Fc-dendrimers were characterized by 1H NMR and FTIR spectroscopy. We have studied the relocation of electrons around the peripheries of dendrimers and between their redox terminals and electrodes by studies of the electrochemistry of dendrimers awarding metallocenes as functional’s groups, because these compounds can be stabilized together their oxidized and their reduced states. In addition, the voltammograms of each Fc-functionalized generation were studied and the influence of scan rate, solvent, and [Fe] unit and the concentration of the Fc-dendrimers were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Newkome GR, He E, Moorefield CN (1999) Suprasupermolecules with novel properties: metallodendrimers. Chem Rev 99(7):1689–1746

    Article  CAS  Google Scholar 

  2. Bo Z, Zhang X, Yi X, Yang M, Shen J, Rehn Y, Xi S (1997) The synthesis of dendrimers bearing alkyl chains and their behavior at air-water interface. Polym Bull 38(3):257–264. doi:10.1007/s002890050046

    Article  CAS  Google Scholar 

  3. Buhleier E, Wehner W, VÖGtle F (1978) “Cascade”- and “Nonskid-Chain-like” syntheses of molecular cavity topologies. Synth Stuttg 02:155–158. doi:10.1055/s-1978-24702

    Article  Google Scholar 

  4. Astruc D, Boisselier E, Ornelas C (2010) Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev 110(4):1857–1959

    Article  CAS  Google Scholar 

  5. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17(1):117–132. doi:10.1295/polymj.17.117

    Article  CAS  Google Scholar 

  6. Hawker CJ, Frechet JM (1990) Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc 112(21):7638–7647

    Article  CAS  Google Scholar 

  7. Xu Z, Moore JS (1993) Synthesis and characterization of a high molecular weight stiff dendrimer. Angew Chem Int Ed 32(2):246–248

    Article  Google Scholar 

  8. Chapman TM, Hillyer GL, Mahan EJ, Shaffer KA (1994) Hydraamphiphiles: novel linear dendritic block copolymer surfactants. J Am Chem Soc 116(24):11195–11196

    Article  CAS  Google Scholar 

  9. Seebach D, Herrmann GF, Lengweiler UD, Bachmann BM, Amrein W (1996) Synthesis and enzymatic degradation of dendrimers from (R)-3-hydroxybutanoic acid and trimesic acid. Angew Chem Int Ed 35(23–24):2795–2797

    Article  CAS  Google Scholar 

  10. Morgenroth F, Reuther E, Müllen K (1997) Polyphenylen-dendrimere: von dreidimensionalen zu zweidimensionalen Strukturen. Angew Chem 109(6):647–649

    Article  Google Scholar 

  11. Kenda B, Diederich F (1998) Supramolecular aggregates of dendritic cyclophanes (dendrophanes) threaded on molecular rods with steroid termini. Angew Chem Int Ed 37(22):3154–3158

    Article  CAS  Google Scholar 

  12. Majoral J-P, Caminade A-M (1999) Dendrimers containing heteroatoms (si, p, B, ge, or bi). Chem Rev 99(3):845–880

    Article  CAS  Google Scholar 

  13. Pan Y, Ford WT (2000) Ester-and amide-terminated dendrimers with alternating amide and ether generations. J Polym Sci Part A Polym Chem 38(9):1533–1543

    Article  CAS  Google Scholar 

  14. Newkome GR, Yao Z, Baker GR, Gupta VK (1985) Casacade molecules: a new approach to micelles. J Org Chem 50:2003–2004

    Article  CAS  Google Scholar 

  15. Stoddart FJ, Welton T (1999) Metal-containing dendritic polymers. Polyhedron 18(27):3575–3591

    Article  CAS  Google Scholar 

  16. Astruc D, Ornelas C, Diallo AK, Ruiz J (2010) Extremely efficient catalysis of carbon-carbon bond formation using “Click” dendrimer-stabilized palladium nanoparticles. Molecules (Basel, Switzerland) 15(7):4947–4960

    Article  CAS  Google Scholar 

  17. Puniredd SR, Yin CM, Hooi YS, Lee PS, Srinivasan M (2009) Dendrimer-encapsulated Pt nanoparticles in supercritical medium: synthesis, characterization, and application to device fabrication. J Colloid Interface Sci 332(2):505–510

    Article  CAS  Google Scholar 

  18. Astruc D, Ornelas C, Ruiz J (2008) Metallocenyl dendrimers and their applications in molecular electronics, sensing, and catalysis. Acc Chem Res 41(07):841–856

    Article  CAS  Google Scholar 

  19. Song C-K, B-w Koo, Kim C-K (2002) Application of dendrimer as a new material for electrical and optical devices. Jpn J Appl Phys 41(4S):2735

    Article  CAS  Google Scholar 

  20. Tolia GT, Choi HH (2008) The role of dendrimers in topical drug delivery. Pharm Technol 32(11):88–98

    CAS  Google Scholar 

  21. Langereis S, Dirksen A, Hackeng TM, van Genderen MH, Meijer E (2007) Dendrimers and magnetic resonance imaging. N J Chem 31(7):1152–1160

    Article  CAS  Google Scholar 

  22. Cheng Y, Zhao L, Li Y, Xu T (2011) Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chem Soc Rev 40(5):2673–2703

    Article  CAS  Google Scholar 

  23. Ennas G, Casula MF, Marras S, Navarra G, Scano A, Marongiu G (2008) Characterization of FeOOH nanoparticles and amorphous silica matrix in an FeOOH-SiO 2 nanocomposite. J Nanomater 2008:1

    Article  Google Scholar 

  24. Hearshaw MA, Moss JR (1999) Organometallic and related metal-containing dendrimers. Chem Commun 1:1–8

    Article  Google Scholar 

  25. Balogh L, Tomalia DA (1998) Poly (amidoamine) dendrimer-templated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters. J Am Chem Soc 120(29):7355–7356

    Article  CAS  Google Scholar 

  26. Astruc D, Vögtle F (2000) Dendrimers II: architecture, nanostructure and supramolecular chemistry. Topics in current chemistry. Springer, Berlin

    Google Scholar 

  27. Loup C, Zanta MA, Caminade AM, Majoral JP, Meunier B (1999) Preparation of water-soluble cationic phosphorus-containing dendrimers as DNA transfecting agents. Chem Eur J 5(12):3644–3650

    Article  CAS  Google Scholar 

  28. Lartigue M-L, Donnadieu B, Galliot C, Caminade A-M, Majoral J-P, Fayet J-P (1997) Large dipole moments of phosphorus-containing dendrimers. Macromolecules 30(23):7335–7337

    Article  CAS  Google Scholar 

  29. Galliot C, Larré C, Caminade A-M, Majoral J-P (1997) Regioselective stepwise growth of dendrimer units in the internal voids of a main dendrimer. Science 277(5334):1981–1984

    Article  CAS  Google Scholar 

  30. Köllner C, Togni A (2001) Synthesis, characterization, and application in asymmetric catalysis of dendrimers containing chiral ferrocenyl diphosphines. Can J Chem 79(11):1762–1774. doi:10.1139/v01-145

    Article  Google Scholar 

  31. Salmon A, Jutzi P (2001) Water soluble ferrocenyl and polyferrocenyl compounds: synthesis and electrochemistry. J Organomet Chem 637:595–608

    Article  Google Scholar 

  32. Casado CM, González B, Cuadrado I, Alonso B, Morán M, Losada J (2000) Mixed ferrocene–cobaltocenium dendrimers: the most stable organometallic redox systems combined in a dendritic molecule. Angew Chem 112(12):2219–2222

    Article  Google Scholar 

  33. Boisselier E, Diallo AK, Salmon L, Ruiz J, Astruc D (2008) Gold nanoparticles synthesis and stabilization via new “clicked” polyethyleneglycol dendrimers. Chem Commun 39:4819–4821

    Article  Google Scholar 

  34. Tan Q, Wang L, Ma L, Yu H, Ding J, Liu Q, Xiao A, Ren G (2008) Study on anion electrochemical recognition based on a novel ferrocenyl compound with multiple binding sites. J Phys Chem B 112(35):11171–11176

    Article  CAS  Google Scholar 

  35. Tan Q, Wang L, Yu H, Deng L (2007) Study on synthesis and electrochemical properties of a novel ferrocene-based compound and its application in anion recognition. J Phys Chem B 111(15):3904–3909

    Article  CAS  Google Scholar 

  36. Chen T, Wang L, Jiang G, Wang J, Dong X, Wang X, Zhou J, Wang C, Wang W (2005) Electrochemical behavior of poly (ferrocenyldimethylsilane-b-dimethylsiloxane) films. J Phys Chem B 109(10):4624–4630

    Article  CAS  Google Scholar 

  37. Chen T, Wang L, Jiang G, Wang J, jie Wang X, Zhou J, Wang J, Chen C, Wang W, Gao H (2006) Electrochemical behavior on poly (ferrocenyldimethylsilane)-b-poly (benzyl ether) linear-dendritic organometallic polymer films. J Electroanal Chem 586(1):122–127

    Article  CAS  Google Scholar 

  38. Villalonga-Barber C, Vallianatou K, Georgakopoulos S, Steele BR, Micha-Screttas M, Levin E, Lemcoff NG (2013) Synthesis, characterisation, electronic spectra and electrochemical investigation of ferrocenyl-terminated dendrimers. Tetrahedron 69(19):3885–3895

    Article  CAS  Google Scholar 

  39. Namazi H, Adeli M (2003) Novel linear–globular thermoreversible hydrogel ABA type copolymers from dendritic citric acid as the A blocks and poly (ethyleneglycol) as the B block. Eur Polym J 39(7):1491–1500

    Article  CAS  Google Scholar 

  40. Namazi H, Adeli M (2005) Dendrimers of citric acid and poly(ethylene glycol) as the new drug-delivery agents. Biomaterials 26(10):1175–1183

    Article  CAS  Google Scholar 

  41. Alipour E, Majidi MR, Saadatirad A, Golabi SM (2012) Determination of uric acid in biological samples on the pretreated pencil graphite electrode. Anal Methods 4(8):2288–2295

    Article  CAS  Google Scholar 

  42. Astruc D, Chardac F (2001) Dendritic catalysts and dendrimers in catalysis. Chem Rev 101(9):2991–3024

    Article  CAS  Google Scholar 

  43. Tsierkezos NG (2007) Cyclic voltammetric studies of ferrocene in nonaqueous solvents in the temperature range from 248.15 to 298.15 K. J Solut Chem 36(3):289–302

    Article  CAS  Google Scholar 

  44. Sato M, Kono H, Shiga M, Motoyama I, Hata K (1968) A simple modification of vilsmeier method for the preparation of formylferrocene. Bull Chem Soc Jpn 41(1):252

    Article  CAS  Google Scholar 

  45. Moulines F, Astruc D (1988) Tentacled iron sandwiches. Angew Chem Int Ed 27(10):1347–1349

    Article  Google Scholar 

  46. Namazi H, Toomari Y (2011) Novel pH sensitive nanocarrier agents based on citric acid dendrimers containing conjugated β-cyclodextrins. APB 1(1):40–47

    Google Scholar 

Download references

Acknowledgements

Authors thankfully acknowledge the financial funding D/39/1104 from the University of Tabriz and Research Center for the Pharmaceutical Nanotechnology (RCPN) of Tabriz University of Medical Science. The authors thank Dr. E. Alipour from the University of Tabriz for his assistance in the optimization of the CV assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Namazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namazi, H., Hashemipour, S.S. & Toomari, Y. Synthesis of citric-acid-based dendrimers decorated with ferrocenyl groups and investigation of their electroactivity. Polym. Bull. 74, 3783–3796 (2017). https://doi.org/10.1007/s00289-017-1930-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-1930-5

Keywords

Navigation