Skip to main content
Log in

Electrochemical preparation and characterization of a new conducting copolymer of 2,7-carbazole and 3-octylthiophene

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the present work, the synthesis and study of the electrochemical behavior of 2,7-bis(3-octylthiophene-2-yl)-N-methylcarbazole are reported. The electropolymerization of this monomer was achieved by potentiodynamic cyclic voltammetry and potentiostatic techniques. Voltammograms show that two different conducting deposits are formed on Pt for oxidation at 1.0 and 0.8 V. The nature of the deposits depends on the applied potential and the scan rate. Both deposits exhibit n- and p-doping/undoping processes that are thermodynamically reversible and kinetically partially reversible. The same behavior was determined on fluorine-doped tin oxide. The nucleation and growth mechanism (NGM) of the electropolymerization were investigated using a potentiostatic technique (i–t). Two mechanisms were obtained, and the deconvolution of the current–time transient for the low-potential data fitted with a theoretical model suggesting that at short times, an instantaneous nucleation with a two-dimensional growth contribution prevails, followed by a three-dimensional progressive nucleation with a transfer charge diffusion. Finally, at longer times, a three-dimensional progressive nucleation with a diffusion-controlled growth contribution becomes important. The morphology predicted from these NGMs fully correlates with that determined by scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bian L, Zhu E, Tang J, Tang W, Zhang F (2012) Recent progress in the design of narrow bandgap conjugated polymers for high-efficiency organic solar cells. Prog Polym Sci 37:1292–1331

    Article  CAS  Google Scholar 

  2. Nambiar S, Yeow JTW (2011) Conductive polymer-based sensors for biomedical applications. Biosens Bioelectron 26:1825–1832

    Article  CAS  Google Scholar 

  3. Guo X, Baumgarten M, Müllen K (2013) Designing π-conjugated polymers for organic electronics. Prog Polym Sci 38:1832–1908

    Article  CAS  Google Scholar 

  4. Argun AA, Aubert PH, Thompson BC, Schwendeman I, Gaupp CL, Hwang J, Pinto NJ, Tanner DB, MacDiarmid AG, Reynolds JR (2004) Multicolored electrochromism in polymers: structures and devices. Chem Mater 16:4401–4412

    Article  CAS  Google Scholar 

  5. Cheng Y-J, Yang S-H, Hsu C-S (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109:5868–5923

    Article  CAS  Google Scholar 

  6. Singh TB, Sariciftci NS (2006) Progress in plastic electronics devices. Annu Rev Mater Res 36:199–230

    Article  CAS  Google Scholar 

  7. Fichou D (1999) Handbook of Oligo- and Polythiophene. Wiley-VCH Verlag GmbH & Co, KGaA

    Google Scholar 

  8. Osaka I, Mccullough RD (2008) Advances in molecular design and synthesis of regioregular polythiophenes. Acc Chem Res 41:1202–1214

    Article  CAS  Google Scholar 

  9. Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783–810

    Article  CAS  Google Scholar 

  10. Jaymand M (2013) Recent progress in chemical modification of polyaniline. Prog Polym Sci 38:1287–1306

    Article  CAS  Google Scholar 

  11. Zhang S, Wang G, Lv G, Yu D, Ding Y (2014) Synthesis and fluorescence properties of a soluble polypyrrole derivative based on a dipyrrole monomer. Synth Met 195:185–192

    Article  CAS  Google Scholar 

  12. Chougule MA (2011) Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanosci Lett 01:6–10

    Article  CAS  Google Scholar 

  13. Neher D (2001) Polyfluorene homopolymers: conjugated liquid-crystalline polymers for bright blue emission and polarized electroluminescence. Macromol Rapid Commun 22:1365–1385

    Article  CAS  Google Scholar 

  14. Kitazawa D, Watanabe N, Yamamoto S, Tsukamoto J (2012) Conjugated polymers based on quinoxaline for polymer solar cells. Sol Energy Mater Sol Cells 98:203–207

    Article  CAS  Google Scholar 

  15. Leclerc M (2001) Polyfluorenes: twenty years of progress. J Polym Sci Part A: Polym Chem 39:2867–2873

    Article  CAS  Google Scholar 

  16. Morin J-F, Leclerc M, Adès D, Siove A (2005) Polycarbazoles: 25 years of progress. Macromol Rapid Commun 26:761–778

    Article  Google Scholar 

  17. Zou Y, Gendron D, Badrou-Aïch R, Najari A, Tao Y, Leclerc M (2009) A high-mobility low-bandgap poly(2,7-carbazole) derivative for photovoltaic applications. Macromolecules 42:2891–2894

    Article  CAS  Google Scholar 

  18. Blouin N, Leclerc M (2008) Poly(2,7-carbazole)s: structure—property Relationships. Acc Chem Res 41:110–119

    Article  Google Scholar 

  19. Yi H, Al-Faifi S, Iraqi A, Watters DC, Kingsley J, Lidzey DG (2011) Carbazole and thienyl benzo[1,2,5]thiadiazole based polymers with improved open circuit voltages and processability for application in solar cells. J Mater Chem 21:13649

    Article  CAS  Google Scholar 

  20. Lee SK, Lee WH, Cho JM, Park SJ, Park JU, Shin WS, Lee JC, Kang IN, Moon SJ (2011) Synthesis and photovoltaic properties of quinoxaline-based alternating copolymers for high-efficiency bulk-heterojunction polymer solar cells. Macromolecules 44:5994–6001

    Article  CAS  Google Scholar 

  21. Lu J, Liang F, Drolet N, Ding J, Tao Y, Movileanu R (2008) Crystalline low band-gap alternating indolocarbazole and benzothiadiazole-cored oligothiophene copolymer for organic solar cell applications. Chem Commun 5315–5317. doi:10.1039/b811031j

  22. Blouin N, Michaud A, Leclerc M (2007) A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Adv Mater 19:2295–2300

    Article  CAS  Google Scholar 

  23. Boudreault P-LT, Beaupré S, Leclerc M (2010) Polycarbazoles for plastic electronics. Polym Chem 1:127–136

    Article  CAS  Google Scholar 

  24. Pan J, Chiu H, Wang B (2005) Theoretical investigation of carbazole derivatives as hole-transporting materials in OLEDs. J Mol Struct (Theochem) 725:89–95

    Article  CAS  Google Scholar 

  25. Tran-Van F, Henri T, Chevrot C (2002) Synthesis and electrochemical properties of mixed ionic and electronic modified polycarbazole. Electrochim Acta 47:2927–2936

    Article  CAS  Google Scholar 

  26. Li Y, Wu Y, Ong BS (2006) Polyindolo[3,2-b]carbazoles: a new class of p-channel semiconductor polymers for organic thin-film transistors. Macromolecules 39:6521–6527

    Article  CAS  Google Scholar 

  27. Roncali J (1992) Conjugated Poiy(thiophenes): synthesis, functionalization, and applications. Chem Rev 92:711–738

    Article  CAS  Google Scholar 

  28. Grazulevicius JV, Strohriegl P, Pielichowski J, Pielichowski K (2003) Carbazole-containing polymers: synthesis, properties and applications. Prog Polym Sci 28:1297–1353

    Article  CAS  Google Scholar 

  29. Heinze J, Frontana-Uribe BA, Ludwigs S (2010) Electrochemistry of conducting polymers–persistent models and new concepts. Chem Rev 110:4724–4771

    Article  CAS  Google Scholar 

  30. Li C, Bai H, Shi G (2009) Conducting polymer nanomaterials: electrosynthesis and applications. Chem Soc Rev 38:2397–2409

    Article  CAS  Google Scholar 

  31. Xia X, Chao D, Qi X, Xiong Q, Zhang Y, Tu J, Zhang H, Fan HJ (2013) Controllable growth of conducting polymers shell for constructing high-quality organic/inorganic core/shell nanostructures and their optical-electrochemical properties. Nano Lett 13:4562–4568

    Article  CAS  Google Scholar 

  32. del Valle M, Cury P, Schrebler R (2002) Solvent effect on the nucleation and growth mechanisms of poly(thiophene). Electrochim Acta 48:397–405

    Article  Google Scholar 

  33. Arteaga GC, Valle MA, Antilén M, Romero M, Ramos A, Hernández L, Arévalo MC, Pastor E, Louarn G (2013) Nucleation and Growth Mechanism of Electro-synthesized Poly (pyrrole) on Steel. Int J Electrochem Sci 8:4120–4130

    CAS  Google Scholar 

  34. Ugalde L, Bernede JC, Del Valle MA, Diaz FR, LeRay P (2002) SEM study of the growth of electrochemically obtained polythiophene thin films: effect of electrolyte and monomer concentration in acetonitrile. J Appl Polym Sci 84:1799–1809

    Article  CAS  Google Scholar 

  35. Aristizabal JA, Soto JP, Ballesteros L, Muñoz E, Ahumada JC (2012) Synthesis, electropolymerization, and photoelectrochemical characterization of 2,7-di(thiophen-2-yl)-N-methylcarbazole. Polym Bull 70:35–46

    Article  Google Scholar 

  36. Pletcher JRD, Greff R, Peat R, Peter LM (2011) Instrumental methods in electrochemistry. Woodhead Publishing Limited, Cambridge

    Google Scholar 

  37. Baycan Koyuncu F, Koyuncu S, Ozdemir E (2011) A new multi-electrochromic 2,7 linked polycarbazole derivative: effect of the nitro subunit. Org Electron Phys Mater Appl 12:1701–1710

    Google Scholar 

  38. Abdulla HS, Spectroscopy I (2013) Electrochemical synthesis and vibrational mode analysis of poly (3-methylthiophene). Int J Electrochem Sci 8:11782–11790

    CAS  Google Scholar 

  39. Sonone R, Raut V, Murhekar G (2014) Structural and electroluminescence properties of pure PVK and doped Tio 2 polymer thin films. Int J Adv Res Chem Sci 1:87–94

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the FONDECYT Project No. 11080073 and the DII-Pontificia Universidad Católica de Valparaíso and are also grateful to CONICYT-FONDEQUIP program NMR 300 (Grant Number EQM 130154) and CONICYT-Beca Doctorado Nacional number 21120405.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Soto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aristizabal, J.A., Ahumada, J.C. & Soto, J.P. Electrochemical preparation and characterization of a new conducting copolymer of 2,7-carbazole and 3-octylthiophene. Polym. Bull. 74, 1649–1660 (2017). https://doi.org/10.1007/s00289-016-1794-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1794-0

Keywords

Navigation