Skip to main content
Log in

Synthesis and thermal properties of novel microencapsulated phase-change materials with binary cores and epoxy polymer shells

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A series of novel epoxy polymer shell microcapsules with n-tetradecane and dimethylbenzene as binary core materials are successfully synthesized via interfacial polymerization. Dimethylbenzene is used as the solvent for epoxy and n-tetradecane. The chemical structure, surface morphology, and thermal properties of the microencapsulated phase-change materials (micro-PCMs) are characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, and transmission electron microscope. Results show that the micro-PCMs have relatively spherical profiles and smooth surfaces with diameters ranging from 10 to 70 μm. The epoxy shell successfully encapsulates the binary core. Phase-change enthalpy and binary core content in the micro-PCMs increase with the increasing mass ratio of the binary core to the epoxy resin. The micro-PCMs degrade in two steps, and the resulting microcapsules exhibit good thermal stabilities. The degradation temperature decreases, as the core-to-shell mass ratio increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhou ZH, Zhang ZM, Zuo J, Huang K, Zhang LY (2015) Phase change materials for solar thermal energy storage in residential buildings in cold climate. Renew Sust Energ Rev 48:692–703

    Article  CAS  Google Scholar 

  2. Aadmi M, Karkri M, EI Hammouti M (2015) Heat transfer characteristics of thermal energy storage for PCM (phase change material) melting in horizontal tube: numerical and experimental investigations. Energy 85:339–352

    Article  CAS  Google Scholar 

  3. Iqbal K, Sun DM (2014) Development of thermo-regulating polypropylene fibre containing microencapsulated phase change materials. Renew Energ 71:473–479

    Article  CAS  Google Scholar 

  4. Memon SA, Cui HZ, Lo TY, Li QS (2015) Development of structural-functional integrated concrete with macro-encapsulated PCM for thermal energy storage. Appl Energ 150:245–257

    Article  CAS  Google Scholar 

  5. Wu WF, Liu N, Cheng WL, Liu Y (2013) Study on the effect of shape-stabilized phase change materials on spacecraft thermal control in extreme thermal environment. Energ Convers Manage 69:174–180

    Article  Google Scholar 

  6. Wang Y, Zhang Y, Xia TD, Zhao WJ, Yang WH (2014) Effects of fabricated technology on particle size distribution and thermal properties of stearic-eicosanoic acid/polymethylmethacrylate nanocapsules. Sol Energ Mat Sol C 120:48–90

    Article  Google Scholar 

  7. Konuklu Y, Paksoy HO, Unal M, Konuklu S (2014) Microencapsulation of a fatty acid with poly (melamine-urea-formaldehyde). Energ Convers Manage 80:382–390

    Article  CAS  Google Scholar 

  8. Sari A, Alkan C, Altintas A (2014) Preparation, characterization and latent heat thermal energy storage properties of micro-nanoencapsulated fatty acids by polystyrene shell. Appl Therm Eng 73:1160–1168

    Article  CAS  Google Scholar 

  9. De Castro PF, Shchukin DG (2014) New polyurethane/docosane microcapsules as phase-change materials for thermal energy storage. Chem-Eur J 21:11174–11179

    Article  Google Scholar 

  10. Chen ZH, Wang JC, Yu F, Zhang ZG, Gao XN (2014) Preparation and properties of graphene oxide-modified poly(melamine-formaldehyde) microcapsules containing phase change material N-dodecanol for thermal energy storage. J Mater Chem A 3:11624–11630

    Article  Google Scholar 

  11. Yang T, Wang R, Hou XQ, Cheng J, Zhang JY (2016) Morphology and high-performance of in situ self-assemble epoxy resin with side aliphatic dangling chains. Mater Lett 166:150–153

    Article  CAS  Google Scholar 

  12. Wu X, Yang X, Zhang Y, Huang W (2016) A new shape memory epoxy resin with excellent comprehensive properties. J MaterSci 51:3231–3240

    Article  CAS  Google Scholar 

  13. Datta J, Wloch M (2015) Selected biotrends in development of epoxy resins and their composites. Polym Bull 71:3035–3049

    Article  Google Scholar 

  14. Jilani W, Mzabi N, Fourati N, Zerrouki C, Gallot-Lavallee O, Zerrouki R, Guermazi H (2015) Effects of curing agent on conductivity, structural and dielectric properties of an epoxy polymer. Polymer 79:73–81

    Article  CAS  Google Scholar 

  15. Sanchez-Silva L, Tsavalas J, Sandberg D, Sanchez P, Rodriguez JF (2010) Synthesis and characterization of paraffin wax microcapsules with acrylic-based polymer shells. Ind Eng Chem Res 49:12204–12211

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the China Postdoctoral Science Foundation (No. 2015M572513) and the Fundamental Research Funds for the Central Universities (No. 310821151010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, K., Ma, B., Wang, H. et al. Synthesis and thermal properties of novel microencapsulated phase-change materials with binary cores and epoxy polymer shells. Polym. Bull. 74, 359–367 (2017). https://doi.org/10.1007/s00289-016-1718-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1718-z

Keywords

Navigation