Skip to main content
Log in

The effects of silver nitrate on the structure and properties of polyurethanes containing pyridyl units

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, 2,6-pyridinedimethanol was used as a chain extender to synthesize a new polyurethane, PDM-PU. Further, various amounts of silver nitrate were incorporated to produce PDM-PU/AgNO3 complexes. FT-IR and UV–Vis analyses confirm the formation of complex in the PDM-PU/AgNO3. DSC and DMA results show that the glass transition temperature (T g), dynamic T g and storage modulus at 25 °C of the PDM-PU/AgNO3 complexes increase with increasing AgNO3 content. This is due to the formation of complex structure that can restrict the segmental motion of polymer chains. The TGA and stress–strain test results show that the thermal decomposition temperature, tensile strength and elongation at break increase with the AgNO3 content initially. Then, they decrease inversely. This indicates that the formation of complex structure raises these properties when the AgNO3 content is below certain value. But as more coordinate bonds were formed, the specimens become brittle. In addition, the crosslink effect caused by coordinate bonds inhibits the dissolution of polymer chains and thereby reduces the swelling degree of the complexes in solvent. Furthermore, AgNO3 imparts antibacterial activity against S. aureus and K. pneumoniae to the complexes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu GQ, Guan CL, Xia HS, Guo FQ, Ding XB, Peng YX (2006) Novel shape-memory polymer based on hydrogen bonding. Macromol Rapid Commun 27:1100–1104

    Article  CAS  Google Scholar 

  2. Tamami B, Yeganeh H, Koohmareh GA (2005) Synthesis and characterization of polyureas derived from 4-aryl-2,6-bis(4-aminophenyl) pyridines and diisocyanates. Iran Polym J 14:785–792

    CAS  Google Scholar 

  3. Chang J, Han J, An J, Im C, Yu YJ, Jin JI (2007) Photoluminescence properties of poly [2-(5′-cyano-5′-methyl-hexyloxy)-1,4-phenylene] and its copolymers with pyridine comonomer units. J Korean Phys Soc 51:1993–1998

    Article  CAS  Google Scholar 

  4. Kato T, Mizoshita N, Kanie K (2001) Hydrogen-bonded liquid crystalline materials: supramolecular polymeric assembly and the induction of dynamic function. Macromol Rapid Commun 22:797–814

    Article  CAS  Google Scholar 

  5. Korhonen JT, Verho T, Rannou P, Ikkala O (2010) Self-assembly and hierarchies in pyridine-containing homopolymers and block copolymers with hydrogen-bonded cholesteric side-chains. Macromolecules 43:1507–1514

    Article  CAS  Google Scholar 

  6. Thibault RJ, Hatchkiss PJ, Rotello VM (2003) Thermally-reversible non-covalent polymer crosslinking Polym. Prepr Am Chem Soc Div Polym Chem 44(2):500

    CAS  Google Scholar 

  7. Alper J (2002) Chemists look to follow biology lead. Science 295:2396–2397

    Article  CAS  Google Scholar 

  8. Thibault RJ, Hatchkiss PJ, Gray M, Rotello VM (2003) Thermally reversible formation of microspheres through non-covalent polymer cross-linking. J Am Chem Soc 125:11249–11252

    Article  CAS  Google Scholar 

  9. Ihata O, Yokota H, Kanie K, Ujiie S, Kato T (2000) Induction of mesophases through the complexation between benzoic acids with lateral groups and polyamides containing a 2,6-diaminopyridine moiety. Liq Cryst. 27:69–74

    Article  CAS  Google Scholar 

  10. Kato T, Ihata O, Ujiie S, Tokita M, Watanabe J (1998) Self-assembly of liquid-crystalline polyamide complexes through the formation of double hydrogen bonds between a 2,6-bis(amino)pyridine moiety and benzoic acids. Macromolecules 31:3551–3555

    Article  CAS  Google Scholar 

  11. Ambrozic G, Zigon M (2005) Hydrogen-bonded liquid-crystalline polyurethane complexes with 4-dodecyloxybenzoic acid. Acta Chim Slov 52:207–214

    CAS  Google Scholar 

  12. Ihata O, Kato T (1999) Hydrogen-bonded complexes of macrocycles containing pyridyl moiety and carboxyl-functionalized polystyrenes. Polym Bull (Heidelberg) 42:497–503

    Article  CAS  Google Scholar 

  13. Mwaura JK, Mathai MK, Chen C, Papadimitrakopoulos F (2003) Light emitting diodes prepared from terbium-immobilized polyurea chelates. J Macromol Sci Pure Appl Chem A40:1253–1262

    Article  CAS  Google Scholar 

  14. Yu SC, Hou SJ, Chan WK (1999) Synthesis, metal complex formation, and electronic properties of a novel conjugate polymer with a tridentate 2,6-bis(benzimidazol-2-yl)pyridine ligand. Macromolecules 32:5251–5256

    Article  CAS  Google Scholar 

  15. Meudtner RM, Hecht S (2008) Responsive backbones based on alternating triazole-pyridine/benzene copolymers: from helically folding polymers to metallo-supramolecularly crosslinked gels Macromol. Rapid Commun 29:347–351

    Article  CAS  Google Scholar 

  16. Alaa S, Abd EA, Christian A, Nola E (2014) Sandwich complex-containing macromolecules: property tunability through versatile synthesis. Macromol Rapid Commun 35:513–559

    Article  Google Scholar 

  17. Park IH, Chanthapally A, Zhang Z, Lee SS, Zaworotko MJ, Vittal JJ (2014) Metal–organic organopolymeric hybrid framework by reversible [2 + 2] cycloaddition reaction. Angew Chem 126:424–429

    Article  Google Scholar 

  18. Vera F, Almuzara C, Orera I, Barbera J, Oriol L, Serrano JL (2008) Side-chain supramolecular polymers with induced supramolecular chirality through H-bonding interactions. J Polym Sci A Polym Chem 46:5528–5541

    Article  CAS  Google Scholar 

  19. Kato T, Frechet JMJ (1995) Hydrogen bonding and the self-assembly of supramolecular liquid-crystalline materials. Macromol Symp 98:311–326

    Article  CAS  Google Scholar 

  20. Ruokolainen J, ten Brinke G, Ikkala O, Torkkeli M, Serimaa R (1996) Mesomorphic structures in flexible polymer-surfactant systems due to hydrogen bonding: poly(4-vinylpyridine)-pentadecylphenol. Macromolecules 29:3409–3415

    Article  CAS  Google Scholar 

  21. Valkama S, Kosonen H, Ruokolainen J, Torkkeli M, Serimaa R, ten Brinke G, Ikkala O (2004) Self-assembled polymeric solid films with temperature-induced large and reversible photonic-bandgap switching. Nat Mater 3:872–876

    Article  CAS  Google Scholar 

  22. Valkama S, Ruotsalainen T, Nykalanen A, Laiho A, Kosonen H, ten Brinke G, Ikkala O, Ruokolainen J (2006) Self-assembled structures in diblock copolymers with hydrogen-bonded amphiphilic plasticizing compounds. Macromolecules 39:9327–9336

    Article  CAS  Google Scholar 

  23. Tung S-H, Kalarickal NC, Mays JW, Xu T (2008) Hierarchical assemblies of block-copolymer-based supramolecules in thin films. Macromolecules 41:6453–6462

    Article  CAS  Google Scholar 

  24. Shibata M, Kimura Y, Yaginuma D (2004) Thermal properties of novel supramolecular polymer networks based on poly(4-vinylpyridine) and disulfonic acids. Polymer 45:7571–7577

    Article  CAS  Google Scholar 

  25. Breul AM, Schafer J, Friebe C, Schlutter F, Paulus RM, Festag G, Hager MD, Winter A, Dietzek B, Popp J, Schubert US (2012) Synthesis and characterization of poly(methylmethacrylate) backbone polymers containing side-chain pendant ruthenium(II) bis-terpyridine complexes with an elongated conjugated system. Macromol Chem Phys 213:808–819

    Article  CAS  Google Scholar 

  26. Shen QD, Yang CZ (1998) Transition metal complexes of N-Picolyl polyurethane. J Polym Sci Part B Polym Phys 36:1539–1546

    Article  CAS  Google Scholar 

  27. Huang SL, Chao MS, Lai JY (1998) Investigation and gas permeability of polyurethane complexes. J Appl Polym Sci 67:865–873

    Article  CAS  Google Scholar 

  28. Francolini I, Ruggeri V, Martinelli A, D’Ilario L, Piozzi A (2006) Novel metal-polyurethane complexes with enhanced antimicrobial activity. Macromol Rapid Commun 27:233–237

    Article  CAS  Google Scholar 

  29. Huang Y, Yu H, Xiao C (2006) Effects of Ca2+ crosslinking on structure and properties of waterborne polyurethane-carboxymethylated guar gum films. Carbohydr Polym 66:500–513

    Article  CAS  Google Scholar 

  30. Paul D, Paul S, Roohpour N, Wilks M, Vadgama P (2013) Antimicrobial, mechanical and thermal studies of silver particle-loaded polyurethane. J Funct Biomater 4:358–375

    Article  CAS  Google Scholar 

  31. Senthilkumar N, Raghavan A, Sultan Nasar A (2005) Novel metal-containing polyurethane elastomers prepared using tetradentate Schiff base metal complexes. Macromol Chem Phys 206:2490–2500

    Article  CAS  Google Scholar 

  32. Tsou CH, Lee HT, Tsai HA, Cheng HJ, Suen MC (2013) Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2,6-pyridinedimethanol as a chain extender. Polym Degrad Stab 98:643–650

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maw-Cherng Suen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HT., Tsou, CH., Jou, CH. et al. The effects of silver nitrate on the structure and properties of polyurethanes containing pyridyl units. Polym. Bull. 71, 2749–2767 (2014). https://doi.org/10.1007/s00289-014-1222-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1222-2

Keywords

Navigation