Skip to main content
Log in

Ionic strength effect in polyelectrolyte dilute solutions within the Debye–Hückel approximation: Monte Carlo and Brownian dynamics simulations

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Two chain models, a Gaussian chain and a touching-beads (wormlike) chain, are used to represent a flexible polyelectrolyte (sodium polystyrene sulfonate) and a semiflexible polyelectrolyte (sodium alginate), respectively. Monte Carlo and Brownian dynamics simulations of those models were carried out to obtain the ionic strength dependence of some conformational and hydrodynamic properties expressed in form of equivalent radii. Electrostatic interactions were taken into account by the Debye–Hückel potential, thus counterions are not considered explicitly. In the case of the sodium polystyrene sulfonate model, a linear dependence of the equivalent radii with the ionic strength is found for a region of intermediate to low enough ionic strength values, whereas for high values of the ionic strength the equivalent radii reach a plateau with a value equal to that of the uncharged chain. Thus, an extrapolation to infinite ionic strength of the linear region would not report the actual property value of the uncharged chain. In the case of the sodium alginate model such a linear dependence is not so clearly appreciated. Our simulation results show a good agreement with several experimental data which support the validity of the Debye–Hückel approximation to model different types of polyelectrolyte solutions in a simple way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dobrynin AV, Rubinstein M (2005) Theory of polyelectrolytes in solutions and at surfaces. Prog Polym Sci 30:1049–1118

    Article  CAS  Google Scholar 

  2. Dobrynin AV (2008) Theory and simulations of charged polymers: from solution properties to polymeric nanomaterials. Curr Opin Colloid Interface Sci 13:376–388

    Article  CAS  Google Scholar 

  3. Carnie SL, Christos GA, Creamer TP (1988) Monte Carlo simulations of polyelectrolytes: isolated fully ionized chains with screened Coulomb interactions. J Chem Phys 89:6484–6496

    CAS  Google Scholar 

  4. Hooper HH, Blanch HW, Prausnitz JM (1990) Configurational properties of partially Ionized polyelectrolytes from Monte Carlo simulation. Macromolecules 23:4820–4829

    Article  CAS  Google Scholar 

  5. Christos GA, Carnie SL, Creamer TP (1992) Monte Carlo simulations of partially ionized polyelectrolytes: conformational properties. Macromolecules 25:1121–1124

    Article  CAS  Google Scholar 

  6. Ullner M, Staikos G, Theodorou DN (1998) Monte Carlo simulations of a single polyelectrolyte in solution: activity coefficients of the simple ions and application to viscosity measurements. Macromolecules 31:7921–7933

    Article  CAS  Google Scholar 

  7. Nguyen TT, Shklovskii BI (2002) Persistence length of a polyelectrolyte in salty water: Monte Carlo study. Phys Rev E 66:021801–7

    Article  CAS  Google Scholar 

  8. Klos J, Pakula T (2005) Lattice Monte Carlo simulations of a charged polymer chain: effect of valence and concentration of added salt. J Chem Phys 122:134908–7

    CAS  Google Scholar 

  9. Micka U, Kremer K (1996) Persistence length of the Debye–Hückel model of weakly charged flexible polyelectrolyte chains. Phys Rev E 54:2653–2662

    Article  CAS  Google Scholar 

  10. Stevens MJ, Plimpton SJ (1998) The effect of added salt on polyelectrolyte structure. Eur Phys J B 2:341–345

    Article  CAS  Google Scholar 

  11. Adamczyk Z, Jachimska B, Jasinski T, Warszynski P, Wasilewska M (2009) Structure of poly (sodium 4-styrenesulfonate) (PSS) in electrolyte solutions: theoretical modeling and measurements. Colloids Surf A 343:96–103

    Article  CAS  Google Scholar 

  12. Carrillo J-MY, Dobrynin AV (2011) Polyelectrolytes in salt solutions: molecular dynamics simulations. Macromolecules 44:5798–5816

    Article  CAS  Google Scholar 

  13. Jeon J, Chun M-S (2007) Structure of flexible and semiflexible polyelectrolyte chains in confined spaces of slit micro/nanochannels. J Chem Phys 126:154904–10

    Google Scholar 

  14. Hoda N, Kumar S (2007) Brownian dynamics simulations of polyelectrolyte adsorption in shear flow with hydrodynamic interaction. J Chem Phys 127:234902–15

    Google Scholar 

  15. Pamies R, Hernández Cifre JG, García de la Torre J (2007) Brownian dynamics simulation of polyelectrolyte dilute solutions under shear flow. J Polym Sci Pol Phys 45:1–9

    Article  CAS  Google Scholar 

  16. Pamies R, Hernández Cifre JG, García de la Torre J (2007) Brownian dynamics simulation of polyelectrolyte dilute solutions: relaxation time and elongational flow. J Polym Sci Pol Phys 45:714–722

    Article  CAS  Google Scholar 

  17. Chun M-S, Kim C, Lee DE (2009) Conformation and translational diffusion of a xanthan polyelectrolyte chain: Brownian dynamics simulation and single molecule tracking. Phys Rev E 79:051919–10

    Article  Google Scholar 

  18. Liu S, Ghosh K, Muthukumar M (2003) Polyelectrolyte solutions with added salt: a simulation study. J Chem Phys 119:1813–1823

    CAS  Google Scholar 

  19. Wei Y-F, Hsiao P-Y (2007) Role of chain stiffness on the conformation of single polyelectrolytes in salt solutions. J Chem Phys 127:064901–15

    Google Scholar 

  20. Zhou T, Chen SB (2006) Computer simulations of diffusion and dynamics of short-chain polyelectrolytes. J Chem Phys 124:034904–9

    Google Scholar 

  21. Rey A, Freire JJ, García de la Torre J (1992) Brownian dynamics simulation of flexible polymer chains with excluded volume and hydrodynamic interaction. Polymer 33:3477–3482

    Article  CAS  Google Scholar 

  22. Öttinger HC (1996) Stochastic processes in polymer fluids. Springer, Berlin

    Book  Google Scholar 

  23. Yamakawa H (1971) Modern theory of polymer solutions. Harper and Row, New York

    Google Scholar 

  24. Zimm BH (1980) Chain molecule hydrodynamics by the Monte-Carlo method and the validity of the Kirkwood-Riseman approximation. Macromolecules 13:592–602

    Article  CAS  Google Scholar 

  25. Fixman M (1983) Variational bounds for polymer transport coefficients. J Chem Phys 78:1588–1593

    CAS  Google Scholar 

  26. Rossky PJ, Doll JD, Friedman HL (1978) Brownian dynamics as a smart Monte Carlo method. J Chem Phys 69:4628–4633

    CAS  Google Scholar 

  27. Ermak DL, McCammon JA (1978) Brownian dynamics with hydrodynamic interactions. J Chem Phys 69:1352–1360

    CAS  Google Scholar 

  28. García de la Torre J, Ortega A, Pérez Sánchez HE, Hernández Cifre JG (2005) MULTIHYDRO and MONTEHYDRO: conformational search and Monte Carlo calculation of solution properties of rigid and flexible macromolecular models. Biophys Chem 116:121–128

    Article  Google Scholar 

  29. García dela Torre J, Hernández Cifre JG, Ortega A, Rodríguez Schmidt R, Fernandes MX, Pérez Sánchez HE, Pamies R (2009) SIMUFLEX : algorithms and tools for simulation of the conformation and dynamics of flexible molecules and nanoparticles in solution. J Chem Theor Comput 5:2606–2618

    Google Scholar 

  30. Rodríguez Schmidt R, Hernández Cifre JG, García de la Torre J (2012) Translational diffusion coefficients of macromolecules. Eur Phys J E 35:130–134

    Article  Google Scholar 

  31. Tricot M (1984) Comparison of experimental and theoretical persistence length of some polyelectrolytes at various ionic strengths. Macromolecules 17:1698–1704

    Article  CAS  Google Scholar 

  32. Manning GS (1969) Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. J Chem Phys 51:924–933

    CAS  Google Scholar 

  33. Andrews NC, McHugh AJ, Schieber JD (1998) Polyelectrolytes in shear and extensional flows: conformation and rheology. J Polym Sci Pol Phys 36:1401–1417

    Article  CAS  Google Scholar 

  34. Zhang H, Wang H, Wang J, Guo R, Zhang Q (2001) The effect of ionic strength on the viscosity of sodium alginate solution. Polym Adv Technol 12:740–745

    Article  CAS  Google Scholar 

  35. Vold IMN, Kristiansen KA, Christensen BE (2006) A study of the chain stiffness and extension of alginates, in vitro epimerized alginates, and periodate-oxidized alginates using size-exclusion chromatography combined with light scattering and viscosity detectors. Biomacromolecules 7:2136–2146

    Article  Google Scholar 

  36. Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  37. Pamies R, Rodríguez Schmidt R, López Martínez MC, García de la Torre J (2010) The influence of mono and divalent cations on dilute and non-dilute aqueous solutions of sodium alginates. Carbohydr Polym 80:248–253

    Article  CAS  Google Scholar 

  38. Borochov N, Eisenberg H (1994) Stiff DNA and flexible NaPSS polyelectrolyte chain expansion at very low salt concentration. Macromolecules 27:1440–1445

    Article  CAS  Google Scholar 

  39. Carrasco B, García de la Torre J (1999) Universal size-independent quantities for rigid and flexible macromolecules. Prog Colloid Polym Sci 113:81–86

    Article  Google Scholar 

  40. Ortega A, García de la Torre J (2007) Equivalent radii and ratios of radii from solution properties as indicators of macromolecular conformation, shape, and flexibility. Biomacromolecules 8:2464–2475

    Article  CAS  Google Scholar 

  41. Amorós D, Ortega A, García de la Torre J (2011) Hydrodynamic properties of wormlike macromolecules: Monte Carlo simulation and global analysis of experimental data. Macromolecules 44:5788–5797

    Article  Google Scholar 

  42. Stevens MJ, Kremer K (1995) The nature of flexible linear polyelectrolytes in salt free solution: a molecular dynamics study. J Chem Phys 103:1669–1690

    CAS  Google Scholar 

Download references

Acknowledgments

This work was performed within a “Grupo de Excelencia de la Región de Murcia” (Grant 04531/GERM/06). Support also provided by grant CTQ2012-33717 from “Ministerio de Economía y Competitividad”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José G. Hernández Cifre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández Cifre, J.G., de la Torre, J.G. Ionic strength effect in polyelectrolyte dilute solutions within the Debye–Hückel approximation: Monte Carlo and Brownian dynamics simulations. Polym. Bull. 71, 2269–2285 (2014). https://doi.org/10.1007/s00289-014-1186-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1186-2

Keywords

Navigation