Skip to main content

Advertisement

Log in

Plastic energy allocation toward life-history functions in a consumer-resource interaction

Analyzing the temporal patterns of the consumer-resource dynamics

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Various environmental alterations resulting from the current global change compromise the persistence of species in their habitual environment. To cope with the obvious risk of extinction, plastic responses provide organisms with rapid acclimatization to new environments. The premise of plastic rescue has been theoretically studied from mathematical models in both deterministic and stochastic environments, focusing on analyzing the persistence and stability of the populations. Here, we evaluate this premise in the framework of a consumer-resource interaction considering the energy investment towards reproduction vs. maintenance as a plastic trait according to positive/negative variation of the available resource. A basic consumer-resource mathematical model is formulated based on the principle of biomass conversion that incorporates the energy allocation toward vital functions of the life-cycle of consumer individuals. Our mathematical approach is based on the impulsive differential equations at fixed moments considering two impulsive effects associated with the instants at which consumers obtain environmental information and when energy allocation strategy change occurs. From a preliminary analysis of the non-plastic temporal dynamics, namely when the energy allocation is constant over time and without experiencing changes concerning the variation of resources, both the persistence and stability of the consumer-resource dynamic are dependent on the energy allocation strategies belonging to a set termed stability range. We found that the plastic energy allocation can promote a stable dynamical pattern in the consumer-resource interaction depending on both the magnitude of the energy allocation change and the time lag between environmental sensibility instants and when the expression of the plastic trait occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Agrawal AA (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294(5541):321–326

    Article  Google Scholar 

  • Akhmetzhanov AR, Grognard F, Mailleret L (2011) Optimal life history strategies in seasonal consumer-resource dynamics. Evolution 65:113–3125

    Article  Google Scholar 

  • Alonzo SH, Kindsvater HK (2008) Life-history patterns. In: Jørgensen SE, Fath BD (eds) Encyclopedia of Ecology. Academic Press, Oxford, pp 2929–2940

    Google Scholar 

  • Arditi R, Berryman AA (1991) The biological control paradox. Trends Ecol Evol 6:32

    Article  Google Scholar 

  • Arditi R, Ginzburg LR (1989) Coupling in predator-prey dynamics: ratio-dependence. J Theor Biol 139:311–326

    Article  Google Scholar 

  • Ashander J, Chevin L-M, Baskett ML (2016) Predicting evolutionary rescue via evolving plasticity in stochastic environments. Proc R Soc B: Biol Sci 283(1839):20161690

    Article  Google Scholar 

  • Auld JR, Agrawal AA, Relyea RA (2010) Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc Biol Sci 277:503–511

    Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  Google Scholar 

  • Berryman A (1992) The orgins and evolution of predator-prey theory. Ecology 73:1530–1534

    Article  Google Scholar 

  • Blueweiss L, Fox H, Kudzma V, Nakashima D, Peters R, Sams S (1978) Relationships between body size and some life history parameters. Oecologia 37:257–273

    Article  Google Scholar 

  • Boggs C (1992) Resource allocation: exploring connections between foraging and life history. Funct Ecol 6:508–518

    Article  Google Scholar 

  • Bonamour S, Chevin L-M, Charmantier A, Teplitsky C (2019) Phenotypic plasticity in response to climate change: the importance of cue variation. Phil Trans R Soc B 374:20180178

    Article  Google Scholar 

  • Chevin L-M, Hoffmann AA (2017) Evolution of phenotypic plasticity in extreme environments. Philos Trans R Soc B: Biol Sci 372:20160138

    Article  Google Scholar 

  • Chevin L-M, Lande R (2010) When do adaptive plasticity and genetic evolution prevent extinction of a density-regulated population? Evolution 64(4):1143–1150

    Article  Google Scholar 

  • Chevin L-M, Lande R (2015) Evolution of environmental cues for phenotypic plasticity. Evolution 69(10):2767–2775

    Article  Google Scholar 

  • Chevin L-M, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol 8:e1000357

    Article  Google Scholar 

  • Chevin L-M, Romain G, Gomulkiewicz R, Holt R, Fellous S (2013) Phenotypic plasticity in evolutionary rescue experiments. Philos Trans R Soc B: Biol Sci 368(1610):20120089–20120089

    Article  Google Scholar 

  • de Roos AM, Schellekens T, Van Kooten T, Van De Wolfshaar K, Claessen D, Persson L (2008) Simplifying a physiologically structured population model to a stage-structured biomass model. Theor Popul Biol 73:47–62

    Article  MATH  Google Scholar 

  • DeLong JP, Hanley TC, Vasseur DA (2014) Predator-prey dynamics and the plasticity of predator body size. Funct Ecol 28(2):487–493

    Article  Google Scholar 

  • DeWitt TJ, Sih A, Wilson DS (1998) Costs and limits of phenotypic plasticity. Trends Ecol Evol 13(2):77–81

    Article  Google Scholar 

  • Ellers J, van Alphen JJM (1997) Life history evolution in Asobara tabida: plasticity in allocation of fat reserves to survival and reproduction. J Evol Biol 10:771–785

    Article  Google Scholar 

  • Engen S, Saether BE (1994) Optimal allocation of resources to growth and reproduction. Theor Popul Biol 46:232–248

    Article  MATH  Google Scholar 

  • Fischer B, Taborsky B, Dieckmann U (2009) Unexpected patterns of plastic energy allocation in stochastic environments. Am Nat 173:108–120

    Article  Google Scholar 

  • Fischer B, Dieckmann U, Taborsky B (2010) When to store energy in a stochastic environment. Evolution 65:1221–1232

    Article  Google Scholar 

  • Fox RJ, Donelson JM, Schunter C, Ravasi T, Gaitán-Espitia JD (2019) Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos Trans R Soc B: Biol Sci 374:20180174

    Article  Google Scholar 

  • Getz WM (1984) Population dynamics: a per capita resource approach. J Theor Biol 108:623–643

    Article  MathSciNet  Google Scholar 

  • Getz WM (2009) Population and evolutionary dynamics of consumer-resource systems. In: McGlade J (ed) Adv Ecol Theory: Princ Appl. Wiley-Blackwell, Oxford, pp 194–231

    Google Scholar 

  • Getz WM (2011) Biomass transformation webs provide a unified approach to consumer-resource modelling. Ecol Lett 14(2):113–124

    Article  Google Scholar 

  • Getz WM (2012) A biomass flow approach to population models and food webs. Nat Resour Model 25(1):93–121

    Article  MathSciNet  Google Scholar 

  • Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21(3):394–407

    Article  Google Scholar 

  • Giuseppe F, Minelli A (2010) Phenotypic plasticity in development and evolution: facts and concepts. Proc R Soc B: Biol Sci 365(1540):547–556

    Google Scholar 

  • González-Olivares E, Rojas-Palma A (2013) Allee effect in Gause type predator-prey models: existence of multiple attractors, limit cycles and separatrix curves. a brief review. Math Model Nat Phenom 8:143–164

    Article  MathSciNet  MATH  Google Scholar 

  • González-Olivares E, Mena-Lorca J, Rojas-Palma A, Flores JD (2011) Dynamical complexities in the Leslie-Gower predator-prey model as consequences of the Allee effect on prey. Appl Math Model 35:366–381

    Article  MathSciNet  MATH  Google Scholar 

  • González-Olivares E, Meneses-Alcay H, González-Yañez B, Mena-Lorca J, Rojas-Palma A, Ramos-Jiliberto R (2011) Multiple stability and uniqueness of the limit cycle in a Gause-type predator-prey model considering the Allee effect on prey. Nonlinear Anal Real World Appl 12:2931–2942

    Article  MathSciNet  MATH  Google Scholar 

  • Gutiérrez R, Córdova-Lepe F, Moreno-Gómez FN, Velásquez NA (2020) Persistence and size of seasonal populations on a consumer-resource relationship depends on the allocation strategy toward life-history functions. Sci Rep 10:21401

    Article  Google Scholar 

  • Heino M, Kaitala V (1999) Evolution of resource allocation between growth and reproduction in animals with indeterminate growth. J Evol Biol 12:423–429

    Article  Google Scholar 

  • Hendry AP (2015) Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. J Hered 107(1):25–41

    Article  MathSciNet  Google Scholar 

  • Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    Article  Google Scholar 

  • Johansson J, Brannstrom A, Metz JAJ, Dieckmann U (2018) Twelve fundamental life histories evolving through allocation-dependent fecundity and survival. Ecol Evol 8(6):3172–3186

    Article  Google Scholar 

  • Keyfitz N, Caswell H (2005) Applied Mathematical Demography, 3rd edn. Springer-Verlag, New York

    MATH  Google Scholar 

  • Kooijman SALM (2000) Dynamic Energy and Mass Budgets in Biological Systems, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kovach-Orr C, Fussmann GF (2012) Evolutionary and plastic rescue in multitrophic model communities. Philos Trans R Soc B: Biol Sci 368(1610):20120084–20120084

    Article  Google Scholar 

  • Kozłowski J, Wiegert RG (1986) Optimal allocation of energy to growth and reproduction. Theor Popul Biol 29:16–37

    Article  MATH  Google Scholar 

  • Lakshmikantham V, Bainov D, Simeonov P (1989) Theory of Impulsive Differential Equation. World Scientific, NJ

    Book  Google Scholar 

  • Mailleret L, Lemesle V (2009) A note on semi-discrete modelling in the life sciences. Philos Trans R Soc A: Math Phys Eng Sci 367:4779–4799

    Article  MathSciNet  MATH  Google Scholar 

  • Miner BG, Sultan SE, Morgan SG, Padilla DK, Relyea RA (2005) Ecological consequences of phenotypic plasticity. Trends Ecol Evol 20(12):685–692

    Article  Google Scholar 

  • Murren C, Auld J, Callahan H, Ghalambor K, Handelsman C, Heskel M, Kingsolver J, Maclean H, Masel J, Maughan H, Pfennig D, Relyea R, Seiter S, Snell-Rood E, Steiner U, Schlichting C (2015) Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity 115:293–301

    Article  Google Scholar 

  • Ng’oma E, Perinchery AM, King EG (2017) How to get the most bang for your buck: the evolution and physiology of nutrition-dependent resource allocation strategies. Proc R Soc B: Biol Sci 284(1857):20170445

    Article  Google Scholar 

  • Nijhout H (2003) Development and evolution of adaptive polyphenisms. Evol Dev 5(1):9–18

    Article  Google Scholar 

  • Peñuelas J, Sardans J, Estiarte M, Ogaya R, Carnicer J, Coll M, Jump AS (2013) Evidence of current impact of climate change on life: a walk from genes to the biosphere. Ecol Lett 19:2303–2338

    Google Scholar 

  • Perrin N, Sibly R (1993) Dynamic models of energy allocation and investment. Annu Rev Ecol Syst 24:379–410

    Article  Google Scholar 

  • Pigluicci M (2005) Evolution of phenotypic plasticity: where are we going now? Trends Ecol Evol 20(9):481–486

    Article  Google Scholar 

  • Ramos-Jiliberto R (2005) Resource-consumer models and the biomass conversion principle. Environ Model Softw 20:85–91

    Article  Google Scholar 

  • Reed TE, Waples RS, Schindle DE, Hard JJ, Kinnison MT (2010) Phenotypic plasticity and population viability: the importance of environmental predictability. Proc R Soc B: Biol Sci 277(1699):3391–3400

    Article  Google Scholar 

  • Rosenzweig ML (1971) Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171:385–387

    Article  Google Scholar 

  • Samoilenko AM, Perestyuk NA (1995) Impulsive differential equations. World scientific series on nonlinear science. Series a: monographs and treatises, vol 14, World Scientific, Singapore

  • Schlaepfer MA, Runge MC, Sherman PW (2002) Ecological and evolutionary traps. Trends Ecol Evol 17(10):474–480

    Article  Google Scholar 

  • Soudijn FH, de Roos AM (2016) Approximation of a physiologically structured population model with seasonal reproduction by a stage-structured biomass model. Thyroid Res 10:73–90

    Google Scholar 

  • Staňková K, Abate A, Sabelis MW (2012) Irreversible prey diapause as an optimal strategy of a physiologically extended Lotka–Volterra model. J Math Biol 66:767–794

    Article  MathSciNet  MATH  Google Scholar 

  • Stankova K, Abate A, Sabelis MW, Busa J, You L (2013) Joining or opting out of a Lotka–Volterra game between predators and prey: does the best strategy depend on modelling energy lost and gained? Interface Focus 3:20130034–20130034

    Article  Google Scholar 

  • Staňková K, Abate A, Sabelis MW (2013) Intra-seasonal strategies based on energy budgets in a dynamic predator-prey game. In: Vlastimil Křivan GZ (ed) Advances in Dynamic Games: Theory, Applications, and Numerical Methods. Birkhäuser, Basel, pp 205–221

    Chapter  MATH  Google Scholar 

  • Steiner UK, Tuljapurkar S, Coulson T (2014) Generation time, net reproductive rate, and growth in stage-age-structured populations. Am Nat 183(6):771–783

    Article  Google Scholar 

  • Stelzer CP (2001) Resource limitation and reproductive effort in a planktonic rotifer. Ecology 82:2521–2533

    Article  Google Scholar 

  • Sun Z, de Roos AM (2015) Alternative stable states in a stage-structured consumer-resource biomass model with niche shift and seasonal reproduction. Theor Popul Biol 103:60–70

    Article  MATH  Google Scholar 

  • Sun Z, de Roos AM (2017) Seasonal reproduction leads to population collapse and an Allee effect in a stage-structured consumer-resource biomass model when mortality rate increases. PLoS ONE 12:e0187338

    Article  Google Scholar 

  • Sun Z, Parvinen K, Heino M, Metz JAJ, de Roos AM, Dieckmann U (2020) Evolution of reproduction periods in seasonal environments. Am Nat 196(4):E88–E109

    Article  Google Scholar 

  • Takimoto G (2003) Adaptive plasticity in ontogenetic niche shifts stabilizes consumer-resource dynamics. Am Nat 162:93–109

    Article  Google Scholar 

  • Thiel T, Gaschler S, Mody K, Blüthgen N, Drossel B (2021) Impact of herbivore preference on the benefit of plant trait variability. Thyroid Res 14:173–187

    Google Scholar 

  • Van Buskirk J, Steiner U (2009) The fitness costs of developmental canalization and plasticity. J Evol Biol 22(4):852–860

    Article  Google Scholar 

  • Van Kleunen M, Fischer M (2005) Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytol 166(1):49–60

    Article  Google Scholar 

  • Van Noordwijk AJ, de Jong G (1986) Acquisition and allocation of resources: their influence on variation in life history tactics. Am Nat 128(1):137–142

    Article  Google Scholar 

  • West-Eberhard MJ (2008) Phenotypic plasticity. In: Jørgensen SE, Fath BD (eds) Encyclopedia of Ecology. Academic Press, Oxford, pp 2701–2707

    Chapter  Google Scholar 

  • Wong BBM, Candolin U (2014) Behavioral responses to changing environments. Behav Ecol 26:665–673

    Article  Google Scholar 

  • Ziółko M, Kozłowski J (1983) Evolution of body size: an optimization model. Math Biosci 64:127–143

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Rodrigo Gutiérrez would like to thank Vicerrectoría de Investigación y Postgrado at Universidad Católica del Maule, Chile. This paper is part of Rodrigo Gutiérrez Ph.D. thesis in the Program Doctorado en Modelamiento Matemático Aplicado at Universidad Católica del Maule, Chile. The authors also wish to thank the referee for a careful reading of the manuscript, and for useful comments and suggestions that markedly improved their paper.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and analysis of the mathematical model, both analytic and numeric, were performed by Rodrigo Gutiérrez. The first draft of the manuscript was written by Rodrigo Gutiérrez and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to R. Gutiérrez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Coefficients of functions \(F_1\), \(G_1\), and \(H_1\).

Let be \(F_1(X,Y,Z)=a_{200}X^2+a_{020}Y^2+a_{110}XY+a_{101}XZ+a_{011}YZ+a_{210}X^{2}Y+a_{201}X^{2}Z+a_{111}XYZ+a_{120}XY^{2}+a_{021}Y^{2}Z+a_{102}XZ^{2}+a_{012}YZ^{2}+a_{300}X^3\), \(G_{1}(X,Y,Z)=b_{200}X^2+b_{020}Y^2+b_{002}Z^2+b_{110}XY+b_{101}XZ+b_{011}YZ+b_{210}X^{2}Y+b_{201}X^{2}Z+b_{111}XYZ+b_{120}XY^{2}+b_{021}Y^{2}Z+b_{102}XZ^{2}+b_{012}YZ^{2}+b_{300}X^3\), and \(H_{1}(X,Y,Z)=c_{200}X^2+c_{020}Y^2+c_{110}XY+c_{101}XZ+c_{011}YZ+c_{210}X^{2}Y+c_{201}X^{2}Z+c_{111}XYZ+c_{120}XY^{2}+c_{021}Y^{2}Z+c_{102}XZ^{2}+c_{012}YZ^{2}+c_{300}X^3\) where

$$\begin{aligned}&a_{200}=\frac{(1 - \alpha )^3 {\tilde{\varphi }} {\tilde{\delta }}^3 [2 \alpha + (1 - \alpha ) {\tilde{\varphi }} {\tilde{\delta }}]}{\alpha ^2 + (1 - \alpha ) \alpha {\tilde{\delta }} + (1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2}, \\&a_{020}=\frac{(1 - \alpha )^3 {\tilde{b}}^2 {\tilde{\delta }} [\alpha +(1-\alpha ){\tilde{\delta }}]}{(1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}]}, \\&a_{110}=\frac{(1 - \alpha )^3 \alpha {\tilde{\varphi }} {\tilde{b}} {\tilde{\delta }}^2}{\alpha ^2 + (1 - \alpha ) \alpha {\tilde{\delta }} + (1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2},\\ {}&a_{101}=\frac{(1 - \alpha )^2 {\tilde{\varphi }} {\tilde{b}} (\alpha (-1 + {\tilde{\delta }}) - {\tilde{\delta }}) {\tilde{\delta }}^2 (-3 \alpha + (-1 + \alpha ) {\tilde{\varphi }} {\tilde{\delta }})}{\sqrt{\alpha +(1-\alpha ){\tilde{\delta }}} (\alpha ^2 + (1 - \alpha ) \alpha {\tilde{\delta }} + (1 - a)^2 {\tilde{\varphi }} {\tilde{\delta }}^2)}, \\&a_{011}=\frac{(1 - \alpha ) {\tilde{b}}^2 (\alpha ^3 + (1 - \alpha ) \alpha ^2 (2 + {\tilde{\varphi }}) {\tilde{\delta }} + (1 - \alpha )^2 \alpha {\tilde{\delta }}^2 - (1 - \alpha )^3 {\tilde{\varphi }} {\tilde{\delta }}^3)}{\sqrt{\alpha +(1-\alpha ){\tilde{\delta }}} (\alpha ^2 + (1 - \alpha ) \alpha {\tilde{\delta }} + (1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2)},\\ {}&a_{210}=-\frac{(1 - \alpha )^3 \alpha ^2 {\tilde{b}} {\tilde{\delta }}^2 (-\alpha ^2 -2 (1 - \alpha ) \alpha {\tilde{\delta }} + (1 - \alpha )^2 (-1 + {\tilde{\varphi }}) {\tilde{\delta }}^2)}{[\alpha +(1-\alpha ){\tilde{\delta }}] ((1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}])},\\&a_{201}=-\frac{\alpha ^2 {\tilde{\varphi }} {\tilde{b}} ({\tilde{\delta }} - \alpha {\tilde{\delta }})^3 ({\tilde{\delta }} - \alpha (1 + {\tilde{\delta }})}{\sqrt{\alpha +(1-\alpha ){\tilde{\delta }}} ((1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}])},\\ {}&a_{111}=\frac{(1 - \alpha )^2 \alpha {\tilde{b}}^2 {\tilde{\delta }} (\alpha ^3 + 2 (1 - \alpha ) \alpha ^2 {\tilde{\delta }} - (1 - \alpha )^2 \alpha (-1 + {\tilde{\varphi }}) {\tilde{\delta }}^2 + (1 - \alpha )^3 {\tilde{\varphi }} {\tilde{\delta }}^3)}{\sqrt{\alpha +(1-\alpha ){\tilde{\delta }}} (\alpha ^2 + (1 - \alpha ) \alpha {\tilde{\delta }} + (1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2)}, \\&a_{120}=-\frac{(1 - \alpha )^4 \alpha {\tilde{b}}^2 {\tilde{\delta }}^2 [\alpha +(1-\alpha ){\tilde{\delta }}]}{(1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}]},\\ {}&a_{021}=-\frac{\alpha ({\tilde{b}} - \alpha {\tilde{b}})^3 {\tilde{\delta }} [\alpha +(1-\alpha ){\tilde{\delta }}]^{3/2}}{(1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}]},\\&a_{102}=-\frac{\alpha ^2 {\tilde{\varphi }} {\tilde{b}} ({\tilde{\delta }} - \alpha {\tilde{\delta }})^3 ({\tilde{\delta }} - \alpha (1 + {\tilde{\delta }}))}{\sqrt{\alpha +(1-\alpha ){\tilde{\delta }}} ((1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}])}, \\ {}&a_{012}=\frac{(1 - \alpha )^4 \alpha {\tilde{\varphi }} {\tilde{b}}^3 {\tilde{\delta }}^3}{(1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}]}, \\&a_{300}=\frac{\alpha ^3 {\tilde{\varphi }} (1 - \alpha )^4 {\tilde{\delta }}^4}{[\alpha +(1-\alpha ){\tilde{\delta }}] ((1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}])},\\ {}&b_{200}=\frac{(1 -\alpha ) \alpha ^2 {\tilde{\varphi }} {\tilde{\delta }}^2 (\alpha ^2 -2 (-1 + \alpha ) \alpha {\tilde{\delta }} + (1 - \alpha )^2 (1 + 2 {\tilde{\varphi }}) {\tilde{\delta }}^2)}{{\tilde{b}} [\alpha +(1-\alpha ){\tilde{\delta }}] ((1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}])},\\&b_{020}=\frac{(1 - \alpha )^2 \alpha {\tilde{b}} {\tilde{\delta }} [\alpha +(1-\alpha ){\tilde{\delta }}]}{(1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}]},\\&b_{002}=-\alpha {\tilde{\varphi }} {\tilde{b}} {\tilde{\delta }},\\&b_{110}=\frac{(1 - \alpha )^4 \alpha {\tilde{\varphi }}^2 {\tilde{\delta }}^4}{-\alpha ^3 +2 (-1 + \alpha ) \alpha ^2 {\tilde{\delta }} - (1 - \alpha )^2 \alpha (1 + {\tilde{\varphi }}) {\tilde{\delta }}^2 - (1 - \alpha )^3 {\tilde{\varphi }} {\tilde{\delta }}^3},\\ {}&b_{101}=\frac{\alpha {\tilde{\varphi }} {\tilde{\delta }} (\alpha ^3 - 2 (-1 + \alpha ) \alpha ^2 {\tilde{\delta }} + (1 - \alpha )^2 \alpha (1 + 2 {\tilde{\varphi }}) {\tilde{\delta }}^2 - (1 - \alpha )^3 {\tilde{\varphi }} {\tilde{\delta }}^3)}{\sqrt{\alpha +(1-\alpha ){\tilde{\delta }}} ((1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}])},\\&b_{011}=\frac{\alpha {\tilde{b}} (\alpha ^3 - 2 (-1 + \alpha ) \alpha ^2 {\tilde{\delta }} - (1 - \alpha )^2 \alpha (-1 + {\tilde{\varphi }}) {\tilde{\delta }}^2 - (1 - \alpha )^3 {\tilde{\varphi }} (1 +{\tilde{\varphi }}) {\tilde{\delta }}^3)}{\sqrt{\alpha +(1-\alpha ){\tilde{\delta }}}(\alpha ^2 + (1 - \alpha ) \alpha {\tilde{\delta }} + (1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2)}, \\ {}&b_{210}=\frac{(1 - \alpha )^2 \alpha ^2 {\tilde{\delta }}^2 ((1 - \alpha )^4 {\tilde{\varphi }}^2 {\tilde{\delta }}^4 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}]^3)}{[\alpha +(1-\alpha ){\tilde{\delta }}]^2 ((1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}])},\\&b_{201}=-\frac{(1 - \alpha )^2 \alpha ^3 {\tilde{\varphi }} {\tilde{\delta }}^3 (\alpha ^2 - 2 (-1 + \alpha ) \alpha {\tilde{\delta }} + (1 - \alpha )^2 (1 + 2 {\tilde{\varphi }}) {\tilde{\delta }}^2)}{[\alpha +(1-\alpha ){\tilde{\delta }}]^{3/2} ((1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}])},\\&b_{111}=\frac{(1 - \alpha ) \alpha ^2 {\tilde{b}} {\tilde{\delta }} (\alpha [\alpha +(1-\alpha ){\tilde{\delta }}]^3 + {\tilde{\varphi }} ({\tilde{\delta }} - \alpha {\tilde{\delta }})^2 (\alpha ^2 - 2 (-1 + \alpha ) \alpha {\tilde{\delta }} + (1 - \alpha )^2 (1 + 2 {\tilde{\varphi }}) {\tilde{\delta }}^2)}{[\alpha +(1-\alpha ){\tilde{\delta }}]^{3/2} ((1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}])},\\&b_{120}=-\frac{(1 - \alpha )^3 \alpha ^2 {\tilde{b}} {\tilde{\delta }}^2 [\alpha +(1-\alpha ){\tilde{\delta }}]}{(1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}]},\\ {}&b_{021}=-\frac{(1 - \alpha )^2 \alpha ^2 {\tilde{b}}^2 {\tilde{\delta }} [\alpha +(1-\alpha ){\tilde{\delta }}]^{3/2}}{(1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}]},\\&b_{102}=-\frac{(1 - \alpha ) \alpha ^3 {\tilde{\varphi }} {\tilde{b}} {\tilde{\delta }}^2 (\alpha ^2 - 2 (-1 + \alpha ) \alpha {\tilde{\delta }} + (1 - \alpha )^2 (1 + {\tilde{\varphi }}) {\tilde{\delta }}^2)}{[\alpha +(1-\alpha ){\tilde{\delta }}] ((1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}])}, \\&b_{012}=\frac{(1 - \alpha )^2 \alpha ^2 {\tilde{\varphi }} {\tilde{b}}^2 {\tilde{\delta }}^2 (\alpha ^2 - 2 (-1 + \alpha ) \alpha {\tilde{\delta }} + (1 - \alpha )^2 (1 + {\tilde{\varphi }}) {\tilde{\delta }}^2)}{[\alpha +(1-\alpha ){\tilde{\delta }}] ((1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}])},\\&b_{300}=-\frac{(1 - \alpha )^5 \alpha ^3 {\tilde{\varphi }}^2 {\tilde{\delta }}^6}{{\tilde{b}} [\alpha +(1-\alpha ){\tilde{\delta }}]^2 ((1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}])},\\ {}&c_{200}= \frac{\alpha {\tilde{\varphi }} (\alpha + (-1 + \alpha ) {\tilde{\delta }}) ({\tilde{\delta }} - \alpha {\tilde{\delta }})^3}{{\tilde{b}} \sqrt{ \alpha + {\tilde{\delta }} - \alpha {\tilde{\delta }}}((1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}])},\\&c_{020}=-\frac{(1 - \alpha )^4 {\tilde{b}} {\tilde{\delta }}^2 \sqrt{\alpha +(1-\alpha ){\tilde{\delta }}}}{(1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}]}, \\ {}&c_{110}=\frac{(1 - \alpha )^2 {\tilde{\delta }} ((1 - \alpha )^3 {\tilde{\varphi }} {\tilde{\delta }}^3 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}]^2)}{\sqrt{\alpha +(1-\alpha ){\tilde{\delta }}} ((1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}])},\\&c_{101}=\frac{(1 - \alpha )^2 \alpha {\tilde{\varphi }} {\tilde{\delta }}^2 (\alpha + 2 (-1 + \alpha ) {\tilde{\delta }})}{\alpha ^2 + (1 - \alpha ) \alpha {\tilde{\delta }} + (1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2},\\&c_{011}=-\frac{(1 - \alpha ) {\tilde{b}} (-\alpha ^3 + (-1 + \alpha ) \alpha ^2 {\tilde{\delta }} - 2 (1 - \alpha )^3 {\tilde{\varphi }} {\tilde{\delta }}^3)}{\alpha ^2 + (1 - \alpha ) \alpha {\tilde{\delta }} + (1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2},\\&c_{210}=\frac{(1 - \alpha )^4 \alpha ^2 {\tilde{\delta }}^3 (-\alpha ^2 - 2 (1 - \alpha ) \alpha {\tilde{\delta }} + (1 - \alpha )^2 (-1 + {\tilde{\varphi }}) {\tilde{\delta }}^2)}{[\alpha +(1-\alpha ){\tilde{\delta }}]^{3/2} ((1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}])},\\&c_{201}=\frac{\alpha ^2 {\tilde{\varphi }} ({\tilde{\delta }} - \alpha {\tilde{\delta }})^4 ({\tilde{\delta }} - \alpha (1 + {\tilde{\delta }}))}{[\alpha +(1-\alpha ){\tilde{\delta }}] ((1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}])},\\&c_{111}=-\frac{(1 - \alpha )^3 \alpha {\tilde{b}} {\tilde{\delta }}^2 (-\alpha ^3 + 2 (-1 + \alpha ) \alpha ^2 {\tilde{\delta }} + (1 - \alpha )^2 \alpha (-1 + {\tilde{\varphi }}) {\tilde{\delta }}^2 - (1 - \alpha )^3 {\tilde{\varphi }} {\tilde{\delta }}^3)}{-\alpha ^3 + 2 (-1 + \alpha ) \alpha ^2 {\tilde{\delta }} - (1 - \alpha )^2 \alpha (1 + {\tilde{\varphi }}) {\tilde{\delta }}^2 - (1 - \alpha )^3 {\tilde{\varphi }} {\tilde{\delta }}^3},\\&c_{120}=\frac{(1 - \alpha )^5 \alpha {\tilde{b}} {\tilde{\delta }}^3 \sqrt{\alpha +(1-\alpha ){\tilde{\delta }}}}{(1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}]},\\&c_{021}=\frac{(1 - \alpha )^4 \alpha {\tilde{b}}^2 {\tilde{\delta }}^2 [\alpha +(1-\alpha ){\tilde{\delta }}]}{(1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}]},\\ {}&c_{102}=\frac{(1 - a)^4 \alpha ^2 {\tilde{\varphi }} {\tilde{b}} {\tilde{\delta }}^4}{\sqrt{ \alpha + {\tilde{\delta }} - \alpha {\tilde{\delta }}} (\alpha ^2 + (1 - \alpha ) \alpha {\tilde{\delta }} + (1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2)},\\ \\&c_{012}=-\frac{(1 - \alpha )^5 \alpha {\tilde{\varphi }} {\tilde{b}}^2 {\tilde{\delta }}^4}{\sqrt{\alpha +(1-\alpha ){\tilde{\delta }}} (\alpha ^2 + (1 - \alpha ) \alpha {\tilde{\delta }} + (1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2)},\\ {}&c_{300}=-\frac{(1 - \alpha )^5 \alpha ^3 {\tilde{\varphi }} {\tilde{\delta }}^5}{{\tilde{b}} [\alpha +(1-\alpha ){\tilde{\delta }}]^{3/2}((1 - \alpha )^2 {\tilde{\varphi }} {\tilde{\delta }}^2 + \alpha [\alpha +(1-\alpha ){\tilde{\delta }}])}, \end{aligned}$$

with \({\tilde{\varphi }}={\tilde{\varphi }}_{r}\alpha +{\tilde{\varphi }}_{m}(1-\alpha )\).

Coefficients associated to the value \({\mathcal {V}}\)

\(a_{0}=-2{\tilde{\delta }}^8{\tilde{\varphi }}_m\), \(a_1=-2 {\tilde{\delta }}^7 (-1 + (-1 + 15 {\tilde{\delta }}) {\tilde{\varphi }}_m - {\tilde{\delta }} {\tilde{\varphi }}_r)\), \(a_2=-{\tilde{\delta }}^6 (5 + {\tilde{\delta }}^2 (210 {\tilde{\varphi }}_m + 3 {\tilde{\varphi }}_m^3 + 2 {\tilde{\varphi }}_m^4 - 28 {\tilde{\varphi }}_r) - 2 {\tilde{\delta }} (13 + 12 {\tilde{\varphi }}_m + {\tilde{\varphi }}_m^2 - {\tilde{\varphi }}_r))\), \(a_3={\tilde{\delta }}^5 (-4 + 2 {\tilde{\delta }} (26 - 5 {\tilde{\varphi }}_m + {\tilde{\varphi }}_m^2) - {\tilde{\delta }}^2 (156 + 27 {\tilde{\varphi }}_m^2 + 5 {\tilde{\varphi }}_m^3 + {\tilde{\varphi }}_m (134 - 4 {\tilde{\varphi }}_r) - 22 {\tilde{\varphi }}_r) +{\tilde{\delta }}^3 (910 {\tilde{\varphi }}_m + 28 {\tilde{\varphi }}_m^4 + {\tilde{\varphi }}_m^3 (39 - 8 {\tilde{\varphi }}_r) - 182 {\tilde{\varphi }}_r - 9 {\tilde{\varphi }}_m^2 {\tilde{\varphi }}_r))\), \(a_4=-{\tilde{\delta }}^4 (1 + {\tilde{\delta }} (-17 + 9 {\tilde{\varphi }}_m) + {\tilde{\delta }}^2 (21 {\tilde{\varphi }}_m^2 + 2 {\tilde{\varphi }}_m^3 + 10 (25 + {\tilde{\varphi }}_r) - 4 {\tilde{\varphi }}_m (31 + {\tilde{\varphi }}_r)) + {\tilde{\delta }}^3 (-52 {\tilde{\varphi }}_m^3 + 8 {\tilde{\varphi }}_m^4 + {\tilde{\varphi }}_m^2 (-167 + 15 {\tilde{\varphi }}_r) + {\tilde{\varphi }}_m (-464 + 50 {\tilde{\varphi }}_r) - 2 (286 - 56 {\tilde{\varphi }}_r + {\tilde{\varphi }}_r^2)) + {\tilde{\delta }}^4 (182 {\tilde{\varphi }}_m^4 - 728 {\tilde{\varphi }}_r + 12 {\tilde{\varphi }}_m^2 (-9 + {\tilde{\varphi }}_r) {\tilde{\varphi }}_r - 26 {\tilde{\varphi }}_m^3 (-9 + 4 {\tilde{\varphi }}_r) + 3 {\tilde{\varphi }}_m (910 + 3 {\tilde{\varphi }}_r^2)))\), \(a_5={\tilde{\delta }}^4 (-23 - 4 {\tilde{\varphi }}_m + {\tilde{\delta }} (19 + 123 {\tilde{\varphi }}_m + 10 {\tilde{\varphi }}_m^2 - 9 {\tilde{\varphi }}_r) - 2 {\tilde{\delta }}^2 (-370 + 3 {\tilde{\varphi }}_m^3 + 4 {\tilde{\varphi }}_m^4 - 57 {\tilde{\varphi }}_r - {\tilde{\varphi }}_r^2 + {\tilde{\varphi }}_m^2 (-49 + 3 {\tilde{\varphi }}_r) +{\tilde{\varphi }}_m (338 + 19 {\tilde{\varphi }}_r)) + {\tilde{\delta }}^3 (-1430 + 88 {\tilde{\varphi }}_m^4 + 352 {\tilde{\varphi }}_r - 23 {\tilde{\varphi }}_r^2 - 2 {\tilde{\varphi }}_m^3 (125 + 16 {\tilde{\varphi }}_r) + 3 {\tilde{\varphi }}_m^2 (-209 + 47 {\tilde{\varphi }}_r) + {\tilde{\varphi }}_m (-1122 + 284 {\tilde{\varphi }}_r - 15 {\tilde{\varphi }}_r^2)) + {\tilde{\delta }}^4 (728 {\tilde{\varphi }}_m^4 + 18 {\tilde{\varphi }}_m^2 {\tilde{\varphi }}_r (-33 + 8 {\tilde{\varphi }}_r) - 78 {\tilde{\varphi }}_m^3 (-11 + 8 {\tilde{\varphi }}_r) - {\tilde{\varphi }}_r (2002 + 3 {\tilde{\varphi }}_r^2) + {\tilde{\varphi }}_m (6006 + 99 {\tilde{\varphi }}_r^2 - 8 {\tilde{\varphi }}_r^3)))\), \(a_6=-{\tilde{\delta }}^3 (17 + {\tilde{\varphi }}_m + {\tilde{\delta }}^2 (284 + 106 {\tilde{\varphi }}_m^2 + 32 {\tilde{\varphi }}_m^3 + {\tilde{\varphi }}_m (665 - 20 {\tilde{\varphi }}_r) - 114 {\tilde{\varphi }}_r) - {\tilde{\delta }} (203 + 51 {\tilde{\varphi }}_m + 7 {\tilde{\varphi }}_m^2 - 4 {\tilde{\varphi }}_r) + {\tilde{\delta }}^3 (1515 - 80 {\tilde{\varphi }}_m^4 + 562 {\tilde{\varphi }}_r + 17 {\tilde{\varphi }}_r^2 + 3 {\tilde{\varphi }}_m^2 (91 + 8 {\tilde{\varphi }}_r) + 2 {\tilde{\varphi }}_m^3 (-71 + 16 {\tilde{\varphi }}_r) + 2 {\tilde{\varphi }}_m (-1077 - 79 {\tilde{\varphi }}_r + 3 {\tilde{\varphi }}_r^2)) + {\tilde{\delta }}^4 (-2574 + 440 {\tilde{\varphi }}_m^4 + 770 {\tilde{\varphi }}_r - 119 {\tilde{\varphi }}_r^2 + 5 {\tilde{\varphi }}_r^3 - 20 {\tilde{\varphi }}_m^3 (37 + 16 {\tilde{\varphi }}_r) + {\tilde{\varphi }}_m^2 (-1595 + 609 {\tilde{\varphi }}_r + 48 {\tilde{\varphi }}_r^2) - 2 {\tilde{\varphi }}_m (1012 - 485 {\tilde{\varphi }}_r + 63 {\tilde{\varphi }}_r^2)) + {\tilde{\delta }}^5 (2002 {\tilde{\varphi }}_m^4 + 396 {\tilde{\varphi }}_m^2 {\tilde{\varphi }}_r (-5 + 2 {\tilde{\varphi }}_r) - 143 {\tilde{\varphi }}_m^3 (-15 + 16 {\tilde{\varphi }}_r) + 2 {\tilde{\varphi }}_r (-2002 - 15 {\tilde{\varphi }}_r^2 + {\tilde{\varphi }}_r^3) - 11 {\tilde{\varphi }}_m (-910 - 45 {\tilde{\varphi }}_r^2 + 8 {\tilde{\varphi }}_r^3)))\), \(a_7={\tilde{\delta }}^2 (-3 - {\tilde{\delta }}^2 (708 + 80 {\tilde{\varphi }}_m^2 + 12 {\tilde{\varphi }}_m^3 + {\tilde{\varphi }}_m (233 - 14 {\tilde{\varphi }}_r) - 47 {\tilde{\varphi }}_r) + {\tilde{\delta }} (95 - 5 {\tilde{\varphi }}_m + {\tilde{\varphi }}_m^2 - {\tilde{\varphi }}_r) + {\tilde{\delta }}^3 (864 + 256 {\tilde{\varphi }}_m^3 + {\tilde{\varphi }}_m (1980 - 192 {\tilde{\varphi }}_r) + {\tilde{\varphi }}_m^2 (472 - 96 {\tilde{\varphi }}_r) - 551 {\tilde{\varphi }}_r + 10 {\tilde{\varphi }}_r^2) - 2 {\tilde{\delta }}^4 (-1140 + 180 {\tilde{\varphi }}_m^4 + {\tilde{\varphi }}_m^3 (339 - 144 {\tilde{\varphi }}_r) - 796 {\tilde{\varphi }}_r - 31 {\tilde{\varphi }}_r^2 +{\tilde{\varphi }}_r^3 + {\tilde{\varphi }}_m (2238 + 194 {\tilde{\varphi }}_r + 15 {\tilde{\varphi }}_r^2) + {\tilde{\varphi }}_m^2 (-259 - 201 {\tilde{\varphi }}_r + 24 {\tilde{\varphi }}_r^2)) + {\tilde{\delta }}^6 (4004 {\tilde{\varphi }}_m^4 + 165 {\tilde{\varphi }}_m^2 {\tilde{\varphi }}_r (-27 + 16 {\tilde{\varphi }}_r) - 143 {\tilde{\varphi }}_m^3 (-27 + 40 {\tilde{\varphi }}_r) - 55 {\tilde{\varphi }}_m (-234 - 27 {\tilde{\varphi }}_r^2 + 8 {\tilde{\varphi }}_r^3) + {\tilde{\varphi }}_r (-6006 - 135 {\tilde{\varphi }}_r^2 + 20 {\tilde{\varphi }}_r^3)) + {\tilde{\delta }}^5 (-3432 + 1320 {\tilde{\varphi }}_m^4 + 1254 {\tilde{\varphi }}_r - 366 {\tilde{\varphi }}_r^2 + 37 {\tilde{\varphi }}_r^3 - 15 {\tilde{\varphi }}_m^3 (101 + 96 {\tilde{\varphi }}_r) + 3 {\tilde{\varphi }}_m^2 (-968 + 537 {\tilde{\varphi }}_r + 144 {\tilde{\varphi }}_r^2) - {\tilde{\varphi }}_m (2838 - 2220 {\tilde{\varphi }}_r + 483 {\tilde{\varphi }}_r^2 + 32 {\tilde{\varphi }}_r^3)))\), \(a_8=-{\tilde{\delta }}^2 (-2 + 9 {\tilde{\varphi }}_m + {\tilde{\delta }} (237 + 23 {\tilde{\varphi }}_m^2 + 6 {\tilde{\varphi }}_r - 2 {\tilde{\varphi }}_m (37 + {\tilde{\varphi }}_r)) - {\tilde{\delta }}^2 (1398 + 84 {\tilde{\varphi }}_m^3 + {\tilde{\varphi }}_m (571 - 146 {\tilde{\varphi }}_r) - 186 {\tilde{\varphi }}_r + 7 {\tilde{\varphi }}_r^2 - 4 {\tilde{\varphi }}_m^2 (-85 + 9 {\tilde{\varphi }}_r)) + {\tilde{\delta }}^3 (1414 + 896 {\tilde{\varphi }}_m^3 - 1429 {\tilde{\varphi }}_r + 86 {\tilde{\varphi }}_r^2 - 168 {\tilde{\varphi }}_m^2 (-7 + 4 {\tilde{\varphi }}_r) + {\tilde{\varphi }}_m (3678 - 752 {\tilde{\varphi }}_r + 96 {\tilde{\varphi }}_r^2)) - 2 {\tilde{\delta }}^4 (480 {\tilde{\varphi }}_m^4 + {\tilde{\varphi }}_m^3 (846 - 576 {\tilde{\varphi }}_r) + {\tilde{\varphi }}_m^2 (-365 - 816 {\tilde{\varphi }}_r + 192 {\tilde{\varphi }}_r^2) + {\tilde{\varphi }}_m (3192 + 324 {\tilde{\varphi }}_r + 186 {\tilde{\varphi }}_r^2 - 16 {\tilde{\varphi }}_r^3) - 2 (651 + 721 {\tilde{\varphi }}_r + 33 {\tilde{\varphi }}_r^2 + 3 {\tilde{\varphi }}_r^3)) + 6 {\tilde{\delta }}^6 (1001 {\tilde{\varphi }}_m^4 - 858 {\tilde{\varphi }}_m^3 (-1 + 2 {\tilde{\varphi }}_r) + 198 {\tilde{\varphi }}_m^2 {\tilde{\varphi }}_r (-6 + 5 {\tilde{\varphi }}_r) - 55 {\tilde{\varphi }}_m (-39 - 9 {\tilde{\varphi }}_r^2 + 4 {\tilde{\varphi }}_r^3) + {\tilde{\varphi }}_r (-1144 - 60 {\tilde{\varphi }}_r^2 + 15 {\tilde{\varphi }}_r^3)) + 2 {\tilde{\delta }}^5 (-1716 + 1320 {\tilde{\varphi }}_m^4 + 792 {\tilde{\varphi }}_r - 372 {\tilde{\varphi }}_r^2 + 62 {\tilde{\varphi }}_r^3 + 4 {\tilde{\varphi }}_r^4 - 60 {\tilde{\varphi }}_m^3 (19 + 32 {\tilde{\varphi }}_r) + 3 {\tilde{\varphi }}_m^2 (-649 + 489 {\tilde{\varphi }}_r + 288 {\tilde{\varphi }}_r^2) - 2 {\tilde{\varphi }}_m (792 - 897 {\tilde{\varphi }}_r + 282 {\tilde{\varphi }}_r^2 + 64 {\tilde{\varphi }}_r^3)))\), \(a_9={\tilde{\delta }} (-4 + {\tilde{\delta }} (19 + 61 {\tilde{\varphi }}_m - 4 {\tilde{\varphi }}_m^2 - 9 {\tilde{\varphi }}_r) + {\tilde{\delta }}^2 (355 + 101 {\tilde{\varphi }}_m^2 + 68 {\tilde{\varphi }}_r + {\tilde{\varphi }}_r^2 - {\tilde{\varphi }}_m (235 + 44 {\tilde{\varphi }}_r)) - {\tilde{\delta }}^3 (252 {\tilde{\varphi }}_m^3 - 8 {\tilde{\varphi }}_m^2 (-94 + 27 {\tilde{\varphi }}_r) + 11 (158 - 35 {\tilde{\varphi }}_r + 6 {\tilde{\varphi }}_r^2) +{\tilde{\varphi }}_m (869 - 534 {\tilde{\varphi }}_r + 36 {\tilde{\varphi }}_r^2)) + {\tilde{\delta }}^4 (1414 + 1792 {\tilde{\varphi }}_m^3 - 2249 {\tilde{\varphi }}_r + 290 {\tilde{\varphi }}_r^2 - 32 {\tilde{\varphi }}_r^3 - 28 {\tilde{\varphi }}_m^2 (-65 + 72 {\tilde{\varphi }}_r) + 2 {\tilde{\varphi }}_m (2249 - 800 {\tilde{\varphi }}_r + 288 {\tilde{\varphi }}_r^2)) - 4 {\tilde{\delta }}^5 (-570 + 420 {\tilde{\varphi }}_m^4 + {\tilde{\varphi }}_m^3 (651 - 672 {\tilde{\varphi }}_r) - 875 {\tilde{\varphi }}_r - 48 {\tilde{\varphi }}_r^2 - 28 {\tilde{\varphi }}_r^3 + 2 {\tilde{\varphi }}_r^4 + 7 {\tilde{\varphi }}_m^2 (-29 - 123 {\tilde{\varphi }}_r + 48 {\tilde{\varphi }}_r^2) - 7 {\tilde{\varphi }}_m (-228 - 29 {\tilde{\varphi }}_r - 45 {\tilde{\varphi }}_r^2 + 8 {\tilde{\varphi }}_r^3)) + 2 {\tilde{\delta }}^7 (3432 {\tilde{\varphi }}_m^4 + 594 {\tilde{\varphi }}_m^2 {\tilde{\varphi }}_r (-7 + 8 {\tilde{\varphi }}_r) - 858 {\tilde{\varphi }}_m^3 (-3 + 8 {\tilde{\varphi }}_r) + {\tilde{\varphi }}_m (5005 + 2079 {\tilde{\varphi }}_r^2 - 1320 {\tilde{\varphi }}_r^3) + 3 {\tilde{\varphi }}_r (-1001 - 105 {\tilde{\varphi }}_r^2 + 40 {\tilde{\varphi }}_r^3)) + 2 {\tilde{\delta }}^6 (-1287 + 1848 {\tilde{\varphi }}_m^4 + 792 {\tilde{\varphi }}_r - 525 {\tilde{\varphi }}_r^2 + 126 {\tilde{\varphi }}_r^3 + 28 {\tilde{\varphi }}_r^4 - 42 {\tilde{\varphi }}_m^3 (31 + 80 {\tilde{\varphi }}_r) + 3 {\tilde{\varphi }}_m^2 (-649 + 651 {\tilde{\varphi }}_r + 672 {\tilde{\varphi }}_r^2) - {\tilde{\varphi }}_m (1419 - 2100 {\tilde{\varphi }}_r + 903 {\tilde{\varphi }}_r^2 + 448 {\tilde{\varphi }}_r^3)))\), \(a_{10}=-{\tilde{\delta }} (-4 (3 + {\tilde{\varphi }}_m) + {\tilde{\delta }} (36 - 16 {\tilde{\varphi }}_m^2 - 52 {\tilde{\varphi }}_r + 2 {\tilde{\varphi }}_m (69 + 4 {\tilde{\varphi }}_r)) + {\tilde{\delta }}^2 (355 + 195 {\tilde{\varphi }}_m^2 + 167 {\tilde{\varphi }}_r + 21 {\tilde{\varphi }}_r^2 - 2 {\tilde{\varphi }}_m (167 + 79 {\tilde{\varphi }}_r)) - {\tilde{\delta }}^3 (1398 + 420 {\tilde{\varphi }}_m^3 + {\tilde{\varphi }}_m^2 (970 - 540 {\tilde{\varphi }}_r) - 484 {\tilde{\varphi }}_r + 201 {\tilde{\varphi }}_r^2 - 12 {\tilde{\varphi }}_r^3 + {\tilde{\varphi }}_m (869 - 970 {\tilde{\varphi }}_r + 180 {\tilde{\varphi }}_r^2)) + {\tilde{\delta }}^4 (864 + 2240 {\tilde{\varphi }}_m^3 - 2249 {\tilde{\varphi }}_r + 510 {\tilde{\varphi }}_r^2 - 160 {\tilde{\varphi }}_r^3 - 140 {\tilde{\varphi }}_m^2 (-13 + 24 {\tilde{\varphi }}_r) + 6 {\tilde{\varphi }}_m (613 - 340 {\tilde{\varphi }}_r + 240 {\tilde{\varphi }}_r^2)) + {\tilde{\delta }}^7 (6006 {\tilde{\varphi }}_m^4 + 792 {\tilde{\varphi }}_m^2 {\tilde{\varphi }}_r (-9 + 14 {\tilde{\varphi }}_r) - 429 {\tilde{\varphi }}_m^3 (-9 + 32 {\tilde{\varphi }}_r) - 462 {\tilde{\varphi }}_m (-13 - 9 {\tilde{\varphi }}_r^2 + 8 {\tilde{\varphi }}_r^3) + 28 {\tilde{\varphi }}_r (-143 - 27 {\tilde{\varphi }}_r^2 + 15 {\tilde{\varphi }}_r^3)) + {\tilde{\delta }}^5 (1515 - 2016 {\tilde{\varphi }}_m^4 + 2884 {\tilde{\varphi }}_r + 214 {\tilde{\varphi }}_r^2 + 308 {\tilde{\varphi }}_r^3 - 48 {\tilde{\varphi }}_r^4 + 84 {\tilde{\varphi }}_m^3 (-31 + 48 {\tilde{\varphi }}_r) + {\tilde{\varphi }}_m^2 (730 + 4368 {\tilde{\varphi }}_r - 2688 {\tilde{\varphi }}_r^2) + 4 {\tilde{\varphi }}_m (-1119 - 203 {\tilde{\varphi }}_r - 546 {\tilde{\varphi }}_r^2 + 168 {\tilde{\varphi }}_r^3)) + 2 {\tilde{\delta }}^6 (-715 + 1848 {\tilde{\varphi }}_m^4 + 627 {\tilde{\varphi }}_r - 525 {\tilde{\varphi }}_r^2 + 175 {\tilde{\varphi }}_r^3 + 84 {\tilde{\varphi }}_r^4 - 12 {\tilde{\varphi }}_m^3 (95 + 336 {\tilde{\varphi }}_r) + 3 {\tilde{\varphi }}_m^2 (-484 + 651 {\tilde{\varphi }}_r + 1008 {\tilde{\varphi }}_r^2) - 2 {\tilde{\varphi }}_m (506 - 897 {\tilde{\varphi }}_r + 525 {\tilde{\varphi }}_r^2 + 448 {\tilde{\varphi }}_r^3)))\), \(a_{11}={\tilde{\delta }} (4 (-3 - 2 {\tilde{\varphi }}_m + {\tilde{\varphi }}_r) + {\tilde{\delta }} (19 - 24 {\tilde{\varphi }}_m^2 - 86 {\tilde{\varphi }}_r - 4 {\tilde{\varphi }}_r^2 + 6 {\tilde{\varphi }}_m (23 + 4 {\tilde{\varphi }}_r)) + {\tilde{\delta }}^2 (237 + 195 {\tilde{\varphi }}_m^2 + 167 {\tilde{\varphi }}_r + 58 {\tilde{\varphi }}_r^2 - {\tilde{\varphi }}_m (235 + 232 {\tilde{\varphi }}_r)) + {\tilde{\delta }}^4 (284 + 1792 {\tilde{\varphi }}_m^3 - 1429 {\tilde{\varphi }}_r + 510 {\tilde{\varphi }}_r^2 - 320 {\tilde{\varphi }}_r^3 - 168 {\tilde{\varphi }}_m^2 (-7 + 20 {\tilde{\varphi }}_r) + 20 {\tilde{\varphi }}_m (99 - 80 {\tilde{\varphi }}_r + 96 {\tilde{\varphi }}_r^2)) - {\tilde{\delta }}^3 (708 + 420 {\tilde{\varphi }}_m^3 + {\tilde{\varphi }}_m^2 (752 - 720 {\tilde{\varphi }}_r) - 385 {\tilde{\varphi }}_r + 284 {\tilde{\varphi }}_r^2 - 48 {\tilde{\varphi }}_r^3 + {\tilde{\varphi }}_m (571 - 970 {\tilde{\varphi }}_r + 360 {\tilde{\varphi }}_r^2)) - 2 {\tilde{\delta }}^5 (-370 + 840 {\tilde{\varphi }}_m^4 + {\tilde{\varphi }}_m^3 (846 - 2016 {\tilde{\varphi }}_r) - 796 {\tilde{\varphi }}_r - 96 {\tilde{\varphi }}_r^2 - 210 {\tilde{\varphi }}_r^3 + 60 {\tilde{\varphi }}_r^4 + 7 {\tilde{\varphi }}_m^2 (-37 - 246 {\tilde{\varphi }}_r + 240 {\tilde{\varphi }}_r^2) + {\tilde{\varphi }}_m (1077 + 324 {\tilde{\varphi }}_r + 1092 {\tilde{\varphi }}_r^2 - 560 {\tilde{\varphi }}_r^3)) + {\tilde{\delta }}^7 (4004 {\tilde{\varphi }}_m^4 - 429 {\tilde{\varphi }}_m^3 (-5 + 24 {\tilde{\varphi }}_r) + 297 {\tilde{\varphi }}_m^2 {\tilde{\varphi }}_r (-15 + 32 {\tilde{\varphi }}_r) + 14 {\tilde{\varphi }}_r (-143 - 45 {\tilde{\varphi }}_r^2 + 36 {\tilde{\varphi }}_r^3) - 6 {\tilde{\varphi }}_m (-455 - 495 {\tilde{\varphi }}_r^2 + 616 {\tilde{\varphi }}_r^3)) + {\tilde{\delta }}^6 (-572 + 2640 {\tilde{\varphi }}_m^4 + 770 {\tilde{\varphi }}_r - 744 {\tilde{\varphi }}_r^2 + 350 {\tilde{\varphi }}_r^3 + 280 {\tilde{\varphi }}_r^4 - 15 {\tilde{\varphi }}_m^3 (101 + 448 {\tilde{\varphi }}_r) + {\tilde{\varphi }}_m^2 (-1595 + 2934 {\tilde{\varphi }}_r + 6048 {\tilde{\varphi }}_r^2) - 2 {\tilde{\varphi }}_m (561 - 1110 {\tilde{\varphi }}_r + 903 {\tilde{\varphi }}_r^2 + 1120 {\tilde{\varphi }}_r^3)))\), \(a_{12}=-{\tilde{\delta }} (-4 (1 + {\tilde{\varphi }}_m - {\tilde{\varphi }}_r) - {\tilde{\delta }} (2 + 16 {\tilde{\varphi }}_m^2 + 52 {\tilde{\varphi }}_r + 8 {\tilde{\varphi }}_r^2 - {\tilde{\varphi }}_m (61 + 24 {\tilde{\varphi }}_r)) + {\tilde{\delta }}^2 (95 + 101 {\tilde{\varphi }}_m^2 + 68 {\tilde{\varphi }}_r + 58 {\tilde{\varphi }}_r^2 - 2 {\tilde{\varphi }}_m (37 + 79 {\tilde{\varphi }}_r)) - {\tilde{\delta }}^3 (203 + 252 {\tilde{\varphi }}_m^3 + {\tilde{\varphi }}_m^2 (340 - 540 {\tilde{\varphi }}_r) - 186 {\tilde{\varphi }}_r + 201 {\tilde{\varphi }}_r^2 - 72 {\tilde{\varphi }}_r^3 + {\tilde{\varphi }}_m (233 - 534 {\tilde{\varphi }}_r + 360 {\tilde{\varphi }}_r^2)) + {\tilde{\delta }}^4 (19 + 896 {\tilde{\varphi }}_m^3 - 551 {\tilde{\varphi }}_r + 290 {\tilde{\varphi }}_r^2 - 320 {\tilde{\varphi }}_r^3 -8 {\tilde{\varphi }}_m^2 (-59 + 252 {\tilde{\varphi }}_r) + {\tilde{\varphi }}_m (665 - 752 {\tilde{\varphi }}_r + 1440 {\tilde{\varphi }}_r^2)) + {\tilde{\delta }}^7 (2002 {\tilde{\varphi }}_m^4 + 1980 {\tilde{\varphi }}_m^2 {\tilde{\varphi }}_r (-1 + 3 {\tilde{\varphi }}_r) - 286 {\tilde{\varphi }}_m^3 (-3 + 20 {\tilde{\varphi }}_r) + {\tilde{\varphi }}_m (910 + 1485 {\tilde{\varphi }}_r^2 - 2640 {\tilde{\varphi }}_r^3) + 4 {\tilde{\varphi }}_r (-182 - 90 {\tilde{\varphi }}_r^2 + 105 {\tilde{\varphi }}_r^3)) + {\tilde{\delta }}^5 (250 - 960 {\tilde{\varphi }}_m^4 + 562 {\tilde{\varphi }}_r + 132 {\tilde{\varphi }}_r^2 + 308 {\tilde{\varphi }}_r^3 - 160 {\tilde{\varphi }}_r^4 + 6 {\tilde{\varphi }}_m^3 (-113 + 448 {\tilde{\varphi }}_r) - 3 {\tilde{\varphi }}_m^2 (-91 - 544 {\tilde{\varphi }}_r + 896 {\tilde{\varphi }}_r^2) + 4 {\tilde{\varphi }}_m (-169 - 97 {\tilde{\varphi }}_r - 315 {\tilde{\varphi }}_r^2 + 280 {\tilde{\varphi }}_r^3)) + {\tilde{\delta }}^6 (-156 + 1320 {\tilde{\varphi }}_m^4 + 352 {\tilde{\varphi }}_r - 366 {\tilde{\varphi }}_r^2 + 252 {\tilde{\varphi }}_r^3 + 280 {\tilde{\varphi }}_r^4 - 20 {\tilde{\varphi }}_m^3 (37 + 192 {\tilde{\varphi }}_r) + 3 {\tilde{\varphi }}_m^2 (-209 + 537 {\tilde{\varphi }}_r + 1344 {\tilde{\varphi }}_r^2) - 2 {\tilde{\varphi }}_m (232 - 485 {\tilde{\varphi }}_r + 564 {\tilde{\varphi }}_r^2 + 896 {\tilde{\varphi }}_r^3)))\), \(a_{13}={\tilde{\delta }}^2 (-3 - 4 {\tilde{\varphi }}_m^2 - 9 {\tilde{\varphi }}_r - 4 {\tilde{\varphi }}_r^2 + {\tilde{\varphi }}_m (9 + 8 {\tilde{\varphi }}_r) + {\tilde{\delta }} (17 + 23 {\tilde{\varphi }}_m^2 + 6 {\tilde{\varphi }}_r + 21 {\tilde{\varphi }}_r^2 - {\tilde{\varphi }}_m (5 + 44 {\tilde{\varphi }}_r)) - {\tilde{\delta }}^2 (23 + 84 {\tilde{\varphi }}_m^3 + {\tilde{\varphi }}_m^2 (80 - 216 {\tilde{\varphi }}_r) - 47 {\tilde{\varphi }}_r + 66 {\tilde{\varphi }}_r^2 - 48 {\tilde{\varphi }}_r^3 + {\tilde{\varphi }}_m (51 - 146 {\tilde{\varphi }}_r + 180 {\tilde{\varphi }}_r^2)) + {\tilde{\delta }}^3 (-17 + 256 {\tilde{\varphi }}_m^3 + {\tilde{\varphi }}_m^2 (106 - 672 {\tilde{\varphi }}_r) - 114 {\tilde{\varphi }}_r + 86 {\tilde{\varphi }}_r^2 - 160 {\tilde{\varphi }}_r^3 + 3 {\tilde{\varphi }}_m (41 - 64 {\tilde{\varphi }}_r + 192 {\tilde{\varphi }}_r^2)) - 2 {\tilde{\delta }}^4 (-26 + 180 {\tilde{\varphi }}_m^4 + {\tilde{\varphi }}_m^3 (71 - 576 {\tilde{\varphi }}_r) - 57 {\tilde{\varphi }}_r - 31 {\tilde{\varphi }}_r^2 - 56 {\tilde{\varphi }}_r^3 + 60 {\tilde{\varphi }}_r^4 + {\tilde{\varphi }}_m^2 (-49 - 201 {\tilde{\varphi }}_r + 672 {\tilde{\varphi }}_r^2) + {\tilde{\varphi }}_m (62 + 79 {\tilde{\varphi }}_r + 186 {\tilde{\varphi }}_r^2 - 336 {\tilde{\varphi }}_r^3)) + {\tilde{\delta }}^6 (728 {\tilde{\varphi }}_m^4 + 66 {\tilde{\varphi }}_m^2 {\tilde{\varphi }}_r (-9 + 40 {\tilde{\varphi }}_r) - 26 {\tilde{\varphi }}_m^3 (-9 + 88 {\tilde{\varphi }}_r) - 15 {\tilde{\varphi }}_m (-14 - 33 {\tilde{\varphi }}_r^2 + 88 {\tilde{\varphi }}_r^3) + {\tilde{\varphi }}_r (-182 - 135 {\tilde{\varphi }}_r^2 + 240 {\tilde{\varphi }}_r^3)) + {\tilde{\delta }}^5 (-26 + 440 {\tilde{\varphi }}_m^4 + 112 {\tilde{\varphi }}_r - 119 {\tilde{\varphi }}_r^2 + 124 {\tilde{\varphi }}_r^3 + 168 {\tilde{\varphi }}_r^4 - 10 {\tilde{\varphi }}_m^3 (25 + 144 {\tilde{\varphi }}_r) + {\tilde{\varphi }}_m^2 (-167 + 609 {\tilde{\varphi }}_r + 1728 {\tilde{\varphi }}_r^2) - {\tilde{\varphi }}_m (134 - 284 {\tilde{\varphi }}_r + 483 {\tilde{\varphi }}_r^2 + 896 {\tilde{\varphi }}_r^3)))\), \(a_{14}=-{\tilde{\delta }}^3 ({\tilde{\varphi }}_m + {\tilde{\varphi }}_m^2 - 2 {\tilde{\varphi }}_m {\tilde{\varphi }}_r + (-1 + {\tilde{\varphi }}_r) {\tilde{\varphi }}_r + {\tilde{\delta }} (1 - 12 {\tilde{\varphi }}_m^3 + 4 {\tilde{\varphi }}_r - 7 {\tilde{\varphi }}_r^2 + 12 {\tilde{\varphi }}_r^3 + {\tilde{\varphi }}_m^2 (-7 + 36 {\tilde{\varphi }}_r) - 2 {\tilde{\varphi }}_m (2 - 7 {\tilde{\varphi }}_r + 18 {\tilde{\varphi }}_r^2)) + {\tilde{\delta }}^2 (-4 + 32 {\tilde{\varphi }}_m^3 + {\tilde{\varphi }}_m^2 (10 - 96 {\tilde{\varphi }}_r) - 9 {\tilde{\varphi }}_r + 10 {\tilde{\varphi }}_r^2 - 32 {\tilde{\varphi }}_r^3 +{\tilde{\varphi }}_m (9 - 20 {\tilde{\varphi }}_r + 96 {\tilde{\varphi }}_r^2)) + {\tilde{\delta }}^5 (182 {\tilde{\varphi }}_m^4 + {\tilde{\varphi }}_m^3 (39 - 624 {\tilde{\varphi }}_r) - 28 {\tilde{\varphi }}_r - 30 {\tilde{\varphi }}_r^3 + 90 {\tilde{\varphi }}_r^4 + 36 {\tilde{\varphi }}_m^2 {\tilde{\varphi }}_r (-3 + 22 {\tilde{\varphi }}_r) + {\tilde{\varphi }}_m (30 + 99 {\tilde{\varphi }}_r^2 - 440 {\tilde{\varphi }}_r^3)) + {\tilde{\delta }}^3 (5 - 80 {\tilde{\varphi }}_m^4 + 10 {\tilde{\varphi }}_r + 17 {\tilde{\varphi }}_r^2 + 12 {\tilde{\varphi }}_r^3 - 48 {\tilde{\varphi }}_r^4 + 6 {\tilde{\varphi }}_m^3 (-1 + 48 {\tilde{\varphi }}_r) + {\tilde{\varphi }}_m^2 (21 + 24 {\tilde{\varphi }}_r - 384 {\tilde{\varphi }}_r^2) + 2 {\tilde{\varphi }}_m (-5 - 19 {\tilde{\varphi }}_r - 15 {\tilde{\varphi }}_r^2 + 112 {\tilde{\varphi }}_r^3)) + {\tilde{\delta }}^4 (-2 + 88 {\tilde{\varphi }}_m^4 + 22 {\tilde{\varphi }}_r - 23 {\tilde{\varphi }}_r^2 + 37 {\tilde{\varphi }}_r^3 + 56 {\tilde{\varphi }}_r^4 - 4 {\tilde{\varphi }}_m^3 (13 + 80 {\tilde{\varphi }}_r) + 3 {\tilde{\varphi }}_m^2 (-9 + 47 {\tilde{\varphi }}_r + 144 {\tilde{\varphi }}_r^2) - 2 {\tilde{\varphi }}_m (12 - 25 {\tilde{\varphi }}_r + 63 {\tilde{\varphi }}_r^2 + 128 {\tilde{\varphi }}_r^3)))\), \(a_{15}={\tilde{\delta }}^6 ({\tilde{\varphi }}_m - {\tilde{\varphi }}_r) ({\tilde{\delta }}^2 (2 + 28 {\tilde{\varphi }}_m^3 + {\tilde{\varphi }}_m^2 (3 - 76 {\tilde{\varphi }}_r) + 3 {\tilde{\varphi }}_r^2 - 20 {\tilde{\varphi }}_r^3 + 2 {\tilde{\varphi }}_m {\tilde{\varphi }}_r (-3 + 34 {\tilde{\varphi }}_r)) + 2 (-4 {\tilde{\varphi }}_m^3 + {\tilde{\varphi }}_m^2 (1 + 12 {\tilde{\varphi }}_r) + {\tilde{\varphi }}_m (1 - 2 {\tilde{\varphi }}_r - 12 {\tilde{\varphi }}_r^2) + {\tilde{\varphi }}_r (-1 + {\tilde{\varphi }}_r + 4 {\tilde{\varphi }}_r^2)) + {\tilde{\delta }} (-2 + 8 {\tilde{\varphi }}_m^3 + 2 {\tilde{\varphi }}_r - 5 {\tilde{\varphi }}_r^2 - 8 {\tilde{\varphi }}_r^3 - {\tilde{\varphi }}_m^2 (5 + 24 {\tilde{\varphi }}_r) + 2 {\tilde{\varphi }}_m (-1 + 5 {\tilde{\varphi }}_r + 12 {\tilde{\varphi }}_r^2)))\), \(a_{16}=-2 {\tilde{\delta }}^8 ({\tilde{\varphi }}_m - {\tilde{\varphi }}_r)^4\).

\(b_{0}=-8 {\tilde{\delta }}^7 {\tilde{\varphi }}_m^3\), \(b_{1}=8 {\tilde{\delta }}^6 {\tilde{\varphi }}_m^2 (-2 + (-1 + 12 {\tilde{\delta }}) {\tilde{\varphi }}_m - 3 {\tilde{\delta }} {\tilde{\varphi }}_r)\), \(b_2=-8 {\tilde{\delta }}^5 {\tilde{\varphi }}_m (1 + {\tilde{\delta }} (-7 + 66 {\tilde{\delta }}) {\tilde{\varphi }}_m^2 + 4 {\tilde{\delta }} {\tilde{\varphi }}_r + 3 {\tilde{\delta }}^2 {\tilde{\varphi }}_r^2 + {\tilde{\varphi }}_m (4 - 33 {\tilde{\delta }}^2 {\tilde{\varphi }}_r + {\tilde{\delta }} (-20 + 3 {\tilde{\varphi }}_r)))\), \(b_{3}=8 {\tilde{\delta }}^4 ({\tilde{\delta }} (-8 - 19 {\tilde{\delta }} + 220 {\tilde{\delta }}^2) {\tilde{\varphi }}_m^3 - {\tilde{\delta }} {\tilde{\varphi }}_r (1 + {\tilde{\delta }} {\tilde{\varphi }}_r)^2 + {\tilde{\varphi }}_m^2 (-2 + 28 {\tilde{\delta }} + 18 {\tilde{\delta }}^2 (-5 + {\tilde{\varphi }}_r) - 165 {\tilde{\delta }}^3 {\tilde{\varphi }}_r) + {\tilde{\varphi }}_m (-3 - 8 {\tilde{\delta }} (-1 + {\tilde{\varphi }}_r) - 3 {\tilde{\delta }}^2 (-12 + {\tilde{\varphi }}_r) {\tilde{\varphi }}_r + 30 {\tilde{\delta }}^3 {\tilde{\varphi }}_r^2))\), \(b_{4}=-8 {\tilde{\delta }}^3 ({\tilde{\delta }} (4 - 64 {\tilde{\delta }} - 21 {\tilde{\delta }}^2 + 495 {\tilde{\delta }}^3) {\tilde{\varphi }}_m^3 + {\tilde{\delta }} {\tilde{\varphi }}_r (3 + {\tilde{\delta }}^2 (-16 + {\tilde{\varphi }}_r) {\tilde{\varphi }}_r - 9 {\tilde{\delta }}^3 {\tilde{\varphi }}_r^2 + {\tilde{\delta }} (-7 + 4 {\tilde{\varphi }}_r)) + {\tilde{\varphi }}_m (3 + {\tilde{\delta }}^2 (28 - 48 {\tilde{\varphi }}_r) + 135 {\tilde{\delta }}^4 {\tilde{\varphi }}_r^2 + {\tilde{\delta }} (-17 + 4 {\tilde{\varphi }}_r) -3 {\tilde{\delta }}^3 {\tilde{\varphi }}_r (-48 + 5 {\tilde{\varphi }}_r)) + {\tilde{\delta }} {\tilde{\varphi }}_m^2 (8 - 495 {\tilde{\delta }}^3 {\tilde{\varphi }}_r + 8 {\tilde{\delta }} (11 + 3 {\tilde{\varphi }}_r) + 3 {\tilde{\delta }}^2 (-80 + 13 {\tilde{\varphi }}_r)))\), \(b_{5}=8 {\tilde{\delta }}^2 (2 {\tilde{\delta }}^2 (14 - 112 {\tilde{\delta }} + 3 {\tilde{\delta }}^2 + 396 {\tilde{\delta }}^3) {\tilde{\varphi }}_m^3 - {\tilde{\delta }} {\tilde{\varphi }}_r (3 + {\tilde{\delta }}^2 (21 - 20 {\tilde{\varphi }}_r) + 2 {\tilde{\delta }} (-7 + {\tilde{\varphi }}_r) - 4 {\tilde{\delta }}^3 (-14 + {\tilde{\varphi }}_r) {\tilde{\varphi }}_r + 36 {\tilde{\delta }}^4 {\tilde{\varphi }}_r^2) - 2 {\tilde{\delta }} {\tilde{\varphi }}_m^2 (12 + 495 {\tilde{\delta }}^4 {\tilde{\varphi }}_r - 84 {\tilde{\delta }}^2 (1 + {\tilde{\varphi }}_r) - 6 {\tilde{\delta }}^3 (-35 + 2 {\tilde{\varphi }}_r) + {\tilde{\delta }} (-44 + 6 {\tilde{\varphi }}_r)) + {\tilde{\varphi }}_m (-1 + 2 {\tilde{\delta }} - 24 {\tilde{\delta }}^4 (-14 + {\tilde{\varphi }}_r) {\tilde{\varphi }}_r + 360 {\tilde{\delta }}^5 {\tilde{\varphi }}_r^2 - {\tilde{\delta }}^2 (43 + 20 {\tilde{\varphi }}_r) - 8 {\tilde{\delta }}^3 (-7 + 16 {\tilde{\varphi }}_r + 3 {\tilde{\varphi }}_r^2)))\), \(b_{6}=-8 {\tilde{\delta }}^2 (14 {\tilde{\delta }}^2 (6 - 32 {\tilde{\delta }} + 3 {\tilde{\delta }}^2 + 66 {\tilde{\delta }}^3) {\tilde{\varphi }}_m^3 - 2 {\tilde{\varphi }}_m^2 (-4 + 60 {\tilde{\delta }} + 693 {\tilde{\delta }}^5 {\tilde{\varphi }}_r + 21 {\tilde{\delta }}^4 (12 + {\tilde{\varphi }}_r) + 4 {\tilde{\delta }}^2 (-31 + 9 {\tilde{\varphi }}_r) - 28 {\tilde{\delta }}^3 (4 + 9 {\tilde{\varphi }}_r)) + {\tilde{\varphi }}_r (1 + {\tilde{\delta }} + 4 {\tilde{\delta }}^4 (-28 + {\tilde{\varphi }}_r) {\tilde{\varphi }}_r - 84 {\tilde{\delta }}^5 {\tilde{\varphi }}_r^2 + {\tilde{\delta }}^2 (29 + 12 {\tilde{\varphi }}_r) + {\tilde{\delta }}^3 (-35 + 44 {\tilde{\varphi }}_r + 8 {\tilde{\varphi }}_r^2)) + {\tilde{\varphi }}_m (19 + 504 {\tilde{\delta }}^4 {\tilde{\varphi }}_r + 630 {\tilde{\delta }}^5 {\tilde{\varphi }}_r^2 + {\tilde{\delta }} (-19 + 48 {\tilde{\varphi }}_r) + {\tilde{\delta }}^2 (-65 - 156 {\tilde{\varphi }}_r + 12 {\tilde{\varphi }}_r^2) - 2 {\tilde{\delta }}^3 (-35 + 104 {\tilde{\varphi }}_r + 72 {\tilde{\varphi }}_r^2)))\), \(b_{7}=8 {\tilde{\delta }} (2 {\tilde{\delta }}^3 (70 - 280 {\tilde{\delta }} + 21 {\tilde{\delta }}^2 + 396 {\tilde{\delta }}^3) {\tilde{\varphi }}_m^3 - 2 {\tilde{\delta }} {\tilde{\varphi }}_m^2 (-16 + 120 {\tilde{\delta }} + 693 {\tilde{\delta }}^5 {\tilde{\varphi }}_r + 42 {\tilde{\delta }}^4 (5 + {\tilde{\varphi }}_r) + 10 {\tilde{\delta }}^2 (-17 + 9 {\tilde{\varphi }}_r) - 28 {\tilde{\delta }}^3 (4 + 15 {\tilde{\varphi }}_r)) - {\tilde{\delta }} {\tilde{\varphi }}_r (20 + 126 {\tilde{\delta }}^5 {\tilde{\varphi }}_r^2 + 4 {\tilde{\delta }}^4 {\tilde{\varphi }}_r (35 + {\tilde{\varphi }}_r) + 6 {\tilde{\delta }} (-3 + 4 {\tilde{\varphi }}_r) + {\tilde{\delta }}^2 (-36 - 66 {\tilde{\varphi }}_r + 4 {\tilde{\varphi }}_r^2) - 5 {\tilde{\delta }}^3 (-7 + 12 {\tilde{\varphi }}_r + 8 {\tilde{\varphi }}_r^2)) + {\tilde{\varphi }}_m (-16 + {\tilde{\delta }} (62 - 16 {\tilde{\varphi }}_r) + 756 {\tilde{\delta }}^6 {\tilde{\varphi }}_r^2 + 42 {\tilde{\delta }}^5 {\tilde{\varphi }}_r (12 + {\tilde{\varphi }}_r) + 12 {\tilde{\delta }}^2 (-3 + 16 {\tilde{\varphi }}_r) + 5 {\tilde{\delta }}^3 (-13 - 68 {\tilde{\varphi }}_r + 12 {\tilde{\varphi }}_r^2) - 8 {\tilde{\delta }}^4 (-7 + 30 {\tilde{\varphi }}_r + 45 {\tilde{\varphi }}_r^2)))\), \(b_{8}=-8 ({\tilde{\delta }}^4 (140 - 448 {\tilde{\delta }} + 6 {\tilde{\delta }}^2 + 495 {\tilde{\delta }}^3) {\tilde{\varphi }}_m^3 - 2 {\tilde{\delta }}^2 {\tilde{\varphi }}_m^2 (-24 + 120 {\tilde{\delta }} + 495 {\tilde{\delta }}^5 {\tilde{\varphi }}_r - 84 {\tilde{\delta }}^3 (1 + 5 {\tilde{\varphi }}_r) + 3 {\tilde{\delta }}^4 (40 + 7 {\tilde{\varphi }}_r) + 4 {\tilde{\delta }}^2 (-31 + 30 {\tilde{\varphi }}_r)) + {\tilde{\delta }} {\tilde{\varphi }}_r (16 + {\tilde{\delta }}^2 (18 - 72 {\tilde{\varphi }}_r) - 126 {\tilde{\delta }}^6 {\tilde{\varphi }}_r^2 - 2 {\tilde{\delta }}^5 {\tilde{\varphi }}_r (56 + 5 {\tilde{\varphi }}_r) + {\tilde{\delta }} (-42 + 8 {\tilde{\varphi }}_r) + {\tilde{\delta }}^3 (29 + 104 {\tilde{\varphi }}_r - 16 {\tilde{\varphi }}_r^2) + {\tilde{\delta }}^4 (-21 + 60 {\tilde{\varphi }}_r + 80 {\tilde{\varphi }}_r^2)) + {\tilde{\varphi }}_m (4 - 32 {\tilde{\delta }} + {\tilde{\delta }}^2 (62 - 48 {\tilde{\varphi }}_r) + 630 {\tilde{\delta }}^7 {\tilde{\varphi }}_r^2 + 42 {\tilde{\delta }}^6 {\tilde{\varphi }}_r (8 + {\tilde{\varphi }}_r) + {\tilde{\delta }}^3 (-19 + 288 {\tilde{\varphi }}_r) + {\tilde{\delta }}^4 (-43 - 340 {\tilde{\varphi }}_r + 120 {\tilde{\varphi }}_r^2) - 4 {\tilde{\delta }}^5 (-7 + 52 {\tilde{\varphi }}_r + 120 {\tilde{\varphi }}_r^2)))\), \(b_{9}=8 ({\tilde{\delta }}^4 (84 - 224 {\tilde{\delta }} - 21 {\tilde{\delta }}^2 + 220 {\tilde{\delta }}^3) {\tilde{\varphi }}_m^3 + {\tilde{\delta }}^2 {\tilde{\varphi }}_m^2 (32 - 120 {\tilde{\delta }} + {\tilde{\delta }}^2 (88 - 180 {\tilde{\varphi }}_r) - 495 {\tilde{\delta }}^5 {\tilde{\varphi }}_r + 6 {\tilde{\delta }}^4 (-15 + 4 {\tilde{\varphi }}_r) + 8 {\tilde{\delta }}^3 (11 + 63 {\tilde{\varphi }}_r)) + {\tilde{\varphi }}_r (-4 + 16 {\tilde{\delta }} + {\tilde{\delta }}^3 (1 - 72 {\tilde{\varphi }}_r) - 84 {\tilde{\delta }}^7 {\tilde{\varphi }}_r^2 - 4 {\tilde{\delta }}^6 {\tilde{\varphi }}_r (14 + {\tilde{\varphi }}_r) + 4 {\tilde{\delta }}^2 (-5 + 4 {\tilde{\varphi }}_r) + {\tilde{\delta }}^4 (14 + 66 {\tilde{\varphi }}_r - 24 {\tilde{\varphi }}_r^2) + {\tilde{\delta }}^5 (-7 + 44 {\tilde{\varphi }}_r + 80 {\tilde{\varphi }}_r^2)) + {\tilde{\varphi }}_m (4 - 16 {\tilde{\delta }} + {\tilde{\delta }}^2 (19 - 48 {\tilde{\varphi }}_r) + 144 {\tilde{\delta }}^6 {\tilde{\varphi }}_r + 360 {\tilde{\delta }}^7 {\tilde{\varphi }}_r^2 + 2 {\tilde{\delta }}^3 (1 + 96 {\tilde{\varphi }}_r) - 8 {\tilde{\delta }}^5 (-1 + 16 {\tilde{\varphi }}_r + 45 {\tilde{\varphi }}_r^2) + {\tilde{\delta }}^4 (-17 - 156 {\tilde{\varphi }}_r + 120 {\tilde{\varphi }}_r^2)))\), \(b_{10}=8 {\tilde{\delta }}^2 ((-4 + 8 {\tilde{\delta }} - 5 {\tilde{\delta }}^3) (2 - 2 {\tilde{\delta }} + {\tilde{\delta }}^2 (7 {\tilde{\varphi }}_m - 4 {\tilde{\varphi }}_r)) ({\tilde{\varphi }}_m - {\tilde{\varphi }}_r)^2 - 2 {\tilde{\delta }}^3 (-4 + {\tilde{\delta }} + 5 {\tilde{\delta }}^2) ({\tilde{\varphi }}_m - {\tilde{\varphi }}_r)^3 - (-1 + {\tilde{\delta }}) (21 {\tilde{\delta }}^4 {\tilde{\varphi }}_m^3 + {\tilde{\delta }}^2 {\tilde{\varphi }}_m^2 (8 - 10 {\tilde{\delta }} - 45 {\tilde{\delta }}^2 {\tilde{\varphi }}_r) - {\tilde{\varphi }}_r (1 - 2 {\tilde{\delta }} + {\tilde{\delta }}^2 (1 - 4 {\tilde{\varphi }}_r) + 6 {\tilde{\delta }}^3 {\tilde{\varphi }}_r + 6 {\tilde{\delta }}^4 {\tilde{\varphi }}_r^2) + {\tilde{\varphi }}_m (1 - 2 {\tilde{\delta }} + {\tilde{\delta }}^2 (1 - 12 {\tilde{\varphi }}_r) + 16 {\tilde{\delta }}^3 {\tilde{\varphi }}_r + 30 {\tilde{\delta }}^4 {\tilde{\varphi }}_r^2)))\), \(b_{11}=8 {\tilde{\delta }}^4 ({\tilde{\varphi }}_m - {\tilde{\varphi }}_r)^2 (-2 + 4 {\tilde{\varphi }}_m + 3 {\tilde{\delta }}^3 (4 {\tilde{\varphi }}_m - 3 {\tilde{\varphi }}_r) - 4 {\tilde{\varphi }}_r + {\tilde{\delta }}^2 (-2 - 7 {\tilde{\varphi }}_m + 4 {\tilde{\varphi }}_r) + {\tilde{\delta }} (4 - 8 {\tilde{\varphi }}_m + 8 {\tilde{\varphi }}_r))\), \(b_{12}=-8 (-1 + {\tilde{\delta }}) {\tilde{\delta }}^6 ({\tilde{\varphi }}_m - {\tilde{\varphi }}_r)^3\).

Simulation procedures

figure a
figure b
figure c

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez, R., Córdova-Lepe, F., Moreno-Gómez, F.N. et al. Plastic energy allocation toward life-history functions in a consumer-resource interaction. J. Math. Biol. 85, 68 (2022). https://doi.org/10.1007/s00285-022-01834-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-022-01834-z

Keywords

Mathematics Subject Classification

Navigation