Skip to main content
Log in

Long-time behavior and Darwinian optimality for an asymmetric size-structured branching process

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study the long time behavior of an asymmetric size-structured measure-valued growth-fragmentation branching process that models the dynamics of a population of cells taking into account physiological and morphological asymmetry at division. We show that the process exhibits a Malthusian behavior; that is that the global population size grows exponentially fast and that the trait distribution of individuals converges to some stable distribution. The proof is based on a generalization of Lyapunov function techniques for non-conservative semi-groups. We then investigate the fluctuations of the growth rate with respect to the parameters guiding asymmetry. In particular, we exhibit that, under some special assumptions, symmetric division is sub-optimal in a Darwinian sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balagué D, Cañizo J, Gabriel P (2013) Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates. Kinet Relat Models 6(2):219–243

    Article  MathSciNet  Google Scholar 

  • Bansaye V, Cloez B, Gabriel P, Marguet A (2019) A non-conservative harris’ ergodic theorem. arXiv:1903.03946

  • Bansaye V, Méléard S (2015) Stochastic models for structured populations. Springer

  • Bernard E, Doumic M, Gabriel P (2019) Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts. Kinet Relat Models 12(3):551–571

    Article  MathSciNet  Google Scholar 

  • Bertoin J (1996) Lévy processes, Cambridge tracts in mathematics, vol 121. Cambridge University Press, Cambridge

    Google Scholar 

  • Bertoin J (2019) On a feynman-kac approach to growth-fragmentation semigroups and their asymptotic behaviors. J Funct Anal 277(11):108270

    Article  MathSciNet  Google Scholar 

  • Bertoin J, Watson AR (2018) A probabilistic approach to spectral analysis of growth-fragmentation equations. J Funct Anal 274(8):2163–2204

    Article  MathSciNet  Google Scholar 

  • Cáceres MJ, Canizo JA, Mischler S (2011) Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations. Journal de mathématiques pures et appliquées 96(4):334–362

    Article  MathSciNet  Google Scholar 

  • Campillo F, Champagnat N, Fritsch C (2017) On the variations of the principal eigenvalue with respect to a parameter in growth-fragmentation models. Commun Math Sci 15(7):1801–1819

    Article  MathSciNet  Google Scholar 

  • Cloez B (2017) Limit theorems for some branching measure-valued processes. Adv Appl Probab 49(2):549–580

    Article  MathSciNet  Google Scholar 

  • Cloez B, de Saporta B, Joubaud M (2020) Optimal stopping for measure-valued piecewise deterministic markov processes. J Appl Probab 57:497–512

    Article  MathSciNet  Google Scholar 

  • Cloez B, Gabriel P (2019) On an irreducibility type condition for the ergodicity of nonconservative semigroups. arXiv:1909.07363

  • Davis M (1993) Markov models and optimization, monographs on statistics and applied probability, vol 49. Chapman & Hall, London

    Book  Google Scholar 

  • Dawson D (1993) Measure-valued markov processes. In: École d’été de Probabilités de Saint-Flour XXI-1991. Springer, pp 1–260

  • Delyon B, de Saporta B, Krell N, Robert L (2018) Investigation of asymmetry in e coli growth rate. Case Stud Bus Ind Government Stat 7:1–13

    Google Scholar 

  • Dieckmann U, Law R (1996) The dynamical theory of coevolution: a derivation from stochastic ecological processes. J Math Biol 34(5–6):579–612

    Article  MathSciNet  Google Scholar 

  • Doumic Jauffret M, Gabriel P (2010) Eigenelements of a general aggregation-fragmentation model. Math Models Methods Appl Sci 20(05):757–783

    Article  MathSciNet  Google Scholar 

  • Doumic M, Hoffmann M, Krell N, Robert L et al (2015) Statistical estimation of a growth-fragmentation model observed on a genealogical tree. Bernoulli 21(3):1760–1799

    Article  MathSciNet  Google Scholar 

  • Ethier SN, Kurtz TG (2009) Markov processes: characterization and convergence, Wiley series in probability and statistics, vol 282. Wiley

  • Fournier N, Méléard S (2004) A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann Appl Probab 14(4):1880–1919

    Article  MathSciNet  Google Scholar 

  • Gabriel P, Martin H (2019) Steady distribution of the incremental model for bacteria proliferation. Netw Heterog Media 14(1):149–171

    Article  MathSciNet  Google Scholar 

  • Gabriel P, Martin H (2019) Periodic asymptotic dynamics of the measure solutions to an equal mitosis equation. arXiv:1909.08276

  • Gaubert S, Lepoutre T (2015) Discrete limit and monotonicity properties of the floquet eigenvalue in an age structured cell division cycle model. J Math Biol 71(6–7):1663–1703

    Article  MathSciNet  Google Scholar 

  • Geritz SA, Kisdi E, Mesze G, Metz J (1998) Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evolut Ecol 12(1):35–57

    Article  Google Scholar 

  • Guillemin F, Robert P, Zwart B (2004) Aimd algorithms and exponential functionals. Ann Appl Probab 14(1):90–117

    Article  MathSciNet  Google Scholar 

  • Hall AJ, Wake G (1989) A functional differential equation arising in modelling of cell growth. ANZIAM J 30(4):424–435

    MathSciNet  MATH  Google Scholar 

  • Hall AJ, Wake GC (1990) Functional differential equations determining steady size distributions for populations of cells growing exponentially. ANZIAM J 31(4):434–453

    MathSciNet  MATH  Google Scholar 

  • Hall A, Wake G, Gandar P (1991) Steady size distributions for cells in one-dimensional plant tissues. J Math Biol 30(2):101–123

    Article  Google Scholar 

  • Harris TE (1964) The theory of branching process, Grundlehren der mathematischen Wissenschaften, vol 119. Rand Corporation

  • Ikeda N, Watanabe S (2014) Stochastic differential equations and diffusion processes, North-Holland Mathematical Library, vol 24. Elsevier

  • Marguet A (2019) A law of large numbers for branching markov processes by the ergodicity of ancestral lineages. ESAIM Probab Stat 23:638–661

    Article  MathSciNet  Google Scholar 

  • Marguet A (2019) Uniform sampling in a structured branching population. Bernoulli 25(4A):2649–2695

    Article  MathSciNet  Google Scholar 

  • Metz J (2006) Fitness. IIASA Interim Report IR-06-061, IIASA, Laxenburg, Austria

  • Metz J, Geritz S, Jacobs F, Heerwaarden J (1995) Adaptive dynamics: a geometric study of the consequences of nearly faithful reproduction. In: van Strien SJ, Verduyn-Lunel SM (eds) Stochastic and spatial structures of dynamical systems. Amsterdam, p 42

  • Meyn SP, Tweedie RL (1993) Stability of markovian processes iii: Foster-lyapunov criteria for continuous-time processes. Adv Appl Probab 25(3):518–548

    Article  MathSciNet  Google Scholar 

  • Michel P (2006) Existence of a solution to the cell division eigenproblem. Math Models Methods Appl Sci 16(supp01):1125–1153

    Article  MathSciNet  Google Scholar 

  • Michel P (2006) Optimal proliferation rate in a cell division model. Math Model Nat Phenom 1(2):23–44

    Article  MathSciNet  Google Scholar 

  • Mischler S, Scher J (2016) Spectral analysis of semigroups and growth-fragmentation equations. Annales de l’Institut Henri Poincare (C) Non Linear Anal 33(3):849–898

    Article  MathSciNet  Google Scholar 

  • Olivier A (2017) How does variability in cells aging and growth rates influence the malthus parameter? Kinet Relat Models 10(2):481–512

    Article  MathSciNet  Google Scholar 

  • Proenca AM, Rang CU, Buetz C, Shi C, Chao L (2018) Age structure landscapes emerge from the equilibrium between aging and rejuvenation in bacterial populations. Nat Commun 9(1):3722

    Article  Google Scholar 

  • Royden HL, Fitzpatrick P (1988) Real analysis, vol 32. Macmillan New York

  • Sinko JW, Streifer W (1967) A new model for age-size structure of a population. Ecology 48(6):910–918

    Article  Google Scholar 

  • Stewart EJ, Madden R, Paul G, Taddei F (2005) Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biol 3(2):e45

    Article  Google Scholar 

  • Taheri-Araghi S, Bradde S, Sauls JT, Hill NS, Levin PA, Paulsson J, Vergassola M, Jun S (2015) Cell-size control and homeostasis in bacteria. Curr Biol 25(3):385–391

    Article  Google Scholar 

  • Tran VC (2006) Modèles particulaires stochastiques pour des problèmes d’évolution adaptative et pour l’approximation de solutions statistiques. Ph.D. thesis, Université de Nanterre—Paris X

  • Wang P, Robert L, Pelletier J, Dang WL, Taddei F, Wright A, Jun S (2010) Robust growth of escherichia coli. Curr Biol 20(12):1099–1103

    Article  Google Scholar 

  • Zaidi AA, Van Brunt B, Wake GC (2015) A model for asymmetrical cell division. Math Biosci Eng 12:491. https://doi.org/10.3934/mbe.2015.12.491

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoîte de Saporta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by the Chaire Modélisation Mathématique et Biodiversité of Veolia Environment - École Polytechnique - Museum National d’Histoire Naturelle - FX, and the ANR projects MESA (ANR-18-CE40-006) and NOLO (ANR-20-CE40-0015), funded by the French Ministry of Research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cloez, B., de Saporta, B. & Roget, T. Long-time behavior and Darwinian optimality for an asymmetric size-structured branching process. J. Math. Biol. 83, 69 (2021). https://doi.org/10.1007/s00285-021-01695-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-021-01695-y

Keywords

Mathematics Subject Classification

Navigation