Skip to main content
Log in

Distribution of extreme first passage times of diffusion

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Many events in biology are triggered when a diffusing searcher finds a target, which is called a first passage time (FPT). The overwhelming majority of FPT studies have analyzed the time it takes a single searcher to find a target. However, the more relevant timescale in many biological systems is the time it takes the fastest searcher(s) out of many searchers to find a target, which is called an extreme FPT. In this paper, we apply extreme value theory to find a tractable approximation for the full probability distribution of extreme FPTs of diffusion. This approximation can be easily applied in many diverse scenarios, as it depends on only a few properties of the short time behavior of the survival probability of a single FPT. We find this distribution by proving that a careful rescaling of extreme FPTs converges in distribution as the number of searchers grows. This limiting distribution is a type of Gumbel distribution and involves the LambertW function. This analysis yields new explicit formulas for approximations of statistics of extreme FPTs (mean, variance, moments, etc.) which are highly accurate and are accompanied by rigorous error estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Some authors define a Gumbel distribution slightly differently, by saying that \(-X\) has a Gumbel distribution with shape \(-b\) and scale a if (11) holds.

References

  • Barlow PW (2016) Why so many sperm cells? Not only a possible means of mitigating the hazards inherent to human reproduction but also an indicator of an exaptation. Commun Integr Biol 9(4):e1204499

    Google Scholar 

  • Basnayake K, Hubl A, Schuss Z, Holcman D (2018) Extreme Narrow escape: shortest paths for the first particles among \(N\) to reach a target window. Phys Lett A 382(48):3449–3454. https://doi.org/10.1016/j.physleta.2018.09.040

    Article  MathSciNet  MATH  Google Scholar 

  • Basnayake K, Mazaud D, Bemelmans A, Rouach N, Korkotian E, Holcman D (2019a) Fast calcium transients in dendritic spines driven by extreme statistics. PLoS Biol 17(6):e2006202. https://doi.org/10.1371/journal.pbio.2006202

    Article  Google Scholar 

  • Basnayake K, Schuss Z, Holcman D (2019b) Asymptotic formulas for extreme statistics of escape times in 1, 2 and 3-dimensions. J Nonlinear Sci 29(2):461–499

    MathSciNet  MATH  Google Scholar 

  • Bender C, Orszag S (2013) Advanced mathematical methods for scientists and engineers I: asymptotic methods and perturbation theory. Springer, Berlin

    MATH  Google Scholar 

  • Benichou O, Grebenkov D, Levitz P, Loverdo C, Voituriez R (2010) Optimal reaction time for surface-mediated diffusion. Phys Rev Lett 105(15):150606. https://doi.org/10.1103/PhysRevLett.105.150606

    Article  Google Scholar 

  • Berezhkovskii A, Makhnovskii Y, Monine M, Zitserman V, Shvartsman S (2004) Boundary homogenization for trapping by patchy surfaces. J Chem Phys 121(22):11390–11394

    Google Scholar 

  • Berg HC, Purcell EM (1977) Physics of chemoreception. Biophys J 20(2):193–219

    Google Scholar 

  • Bernoff A, Lindsay A, Schmidt D (2018) Boundary homogenization and capture time distributions of semipermeable membranes with periodic patterns of reactive sites. Multiscale Model Simul 16(3):1411–1447. https://doi.org/10.1137/17M1162512

    Article  MathSciNet  MATH  Google Scholar 

  • Billingsley P (2013) Convergence of probability measures. Wiley, New York

    MATH  Google Scholar 

  • Bressloff PC, Lawley SD (2015) Escape from subcellular domains with randomly switching boundaries. Multiscale Model Simul 13(4):1420–1445

    MathSciNet  MATH  Google Scholar 

  • Bressloff PC, Newby JM (2013) Stochastic models of intracellular transport. Rev Mod Phys 85(1):135–196. https://doi.org/10.1103/RevModPhys.85.135

    Article  Google Scholar 

  • Brown HT, Escombe F (1900) Static diffusion of gases and liquids in relation to the assimilation of carbon and translocation in plants. Philos Trans R Soc Lond Ser B Contain Papers Biol Char 193(185–193):223–291

    Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Cheviakov AF, Ward MJ, Straube R (2010) An asymptotic analysis of the mean first passage time for narrow escape problems: part II: the sphere. Multiscale Model Simul 8(3):836–870

    MathSciNet  MATH  Google Scholar 

  • Cheviakov AF, Reimer AS, Ward MJ (2012) Mathematical modeling and numerical computation of narrow escape problems. Phys Rev E 85(2):021131

    Google Scholar 

  • Chou T, D’Orsogna MR (2014) First passage problems in biology. In: First-passage phenomena and their applications. World Scientific, pp 306–345

  • Coles S (2001) An introduction to statistical modeling of extreme values, vol 208. Springer, Berlin

    MATH  Google Scholar 

  • Coombs D (2019) First among equals: comment on “Redundancy principle and the role of extreme statistics in molecular and cellular biology” by Z. Schuss, K. Basnayake and D. Holcman. Phys Life Rev 28:92–93. https://doi.org/10.1016/j.plrev.2019.03.002

    Article  Google Scholar 

  • Corless R, Gonnet G, Hare D, Jeffrey D, Knuth D (1996) On the Lambert function. Adv Comput Math 5(1):329–359

    MathSciNet  MATH  Google Scholar 

  • Dagdug L, Vázquez M, Berezhkovskii A, Zitserman V (2016) Boundary homogenization for a sphere with an absorbing cap of arbitrary size. J Chem Phys 145(21):214101

    Google Scholar 

  • De Haan L, Ferreira A (2007) Extreme value theory: an introduction. Springer, Berlin

    MATH  Google Scholar 

  • Delgado MI, Ward MJ, Coombs D (2015) Conditional mean first passage times to small traps in a 3-D domain with a sticky boundary: applications to T cell searching behavior in lymph nodes. Multiscale Model Simul 13(4):1224–1258

    MathSciNet  MATH  Google Scholar 

  • Falk M, Hüsler J, Reiss R (2010) Laws of small numbers: extremes and rare events. Springer, Berlin

    MATH  Google Scholar 

  • Fisher R, Tippett L (1928) Limiting forms of the frequency distribution of the largest or smallest member of a sample. In: Mathematical proceedings of the Cambridge philosophical society, vol 24. Cambridge University Press, pp 180–190

  • Godec A, Metzler R (2016a) First passage time distribution in heterogeneity controlled kinetics: going beyond the mean first passage time. Sci Rep 6:20349

    Google Scholar 

  • Godec A, Metzler R (2016b) Universal proximity effect in target search kinetics in the few-encounter limit. Phys Rev X 6(4):041037

    Google Scholar 

  • Grebenkov D, Rupprecht JF (2017) The escape problem for mortal walkers. J Chem Phys 146(8):084106

    Google Scholar 

  • Grebenkov DS (2006) Partially reflected brownian motion: a stochastic approach to transport phenomena. Focus Probab Theory, 135–169

  • Grebenkov DS, Metzler R, Oshanin G (2018a) Strong defocusing of molecular reaction times results from an interplay of geometry and reaction control. Commun Chem 1(1):1–12

    Google Scholar 

  • Grebenkov DS, Metzler R, Oshanin G (2018b) Towards a full quantitative description of single-molecule reaction kinetics in biological cells. Phys Chem Chem Phys 20(24):16393–16401

    Google Scholar 

  • Grebenkov DS, Metzler R, Oshanin G (2019) Full distribution of first exit times in the narrow escape problem. New J Phys 21(12):122001

    Google Scholar 

  • Guerrier C, Holcman D (2018) The first 100 nm inside the pre-synaptic terminal where calcium diffusion triggers vesicular release. Front Synaptic Neurosci. https://doi.org/10.3389/fnsyn.2018.00023

    Article  Google Scholar 

  • Holcman D, Schuss Z (2014a) The narrow escape problem. SIAM Rev 56(2):213–257. https://doi.org/10.1137/120898395

    Article  MathSciNet  MATH  Google Scholar 

  • Holcman D, Schuss Z (2014b) Time scale of diffusion in molecular and cellular biology. J Phys A Math Theor 47(17):173001. https://doi.org/10.1088/1751-8113/47/17/173001

    Article  MATH  Google Scholar 

  • Katz B, Voolstra O, Tzadok H, Yasin B, Rhodes-Modrov E, Bartels JP, Strauch L, Huber A, Minke B (2017) The latency of the light response is modulated by the phosphorylation state of drosophila trp at a specific site. Channels 11(6):678–685

    Google Scholar 

  • Keil FJ (1999) Diffusion and reaction in porous networks. Catal Today 53(2):245–258

    Google Scholar 

  • Kurella V, Tzou JC, Coombs D, Ward MJ (2015) Asymptotic analysis of first passage time problems inspired by ecology. Bull Math Biol 77(1):83–125

    MathSciNet  MATH  Google Scholar 

  • Larson DR, Zenklusen D, Wu B, Chao JA, Singer RH (2011) Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science 332(6028):475–478

    Google Scholar 

  • Lawley SD (2019) Boundary homogenization for trapping patchy particles. Phys Rev E 100(3):032601

    Google Scholar 

  • Lawley SD (2020) Universal formula for extreme first passage statistics of diffusion. Phys Rev E 101(1):012413

    Google Scholar 

  • Lawley SD, Keener JP (2015) A new derivation of robin boundary conditions through homogenization of a stochastically switching boundary. SIAM J Appl Dyn Syst 14(4):1845–1867

    MathSciNet  MATH  Google Scholar 

  • Lawley SD, Madrid JB (2020) A probabilistic approach to extreme statistics of Brownian escape times in dimensions 1, 2, and 3. J Nonlinear Sci, 1–21

  • Lawley SD, Miles CE (2019) Diffusive search for diffusing targets with fluctuating diffusivity and gating. J Nonlinear Sci. https://doi.org/10.1007/s00332-019-09564-1

    Article  MathSciNet  MATH  Google Scholar 

  • Lindsay AE, Bernoff AJ, Ward MJ (2017) First passage statistics for the capture of a brownian particle by a structured spherical target with multiple surface traps. Multiscale Model Simul 15(1):74–109

    MathSciNet  MATH  Google Scholar 

  • Martyushev LMMinimal time, weibull distribution and maximum entropy production principle. Comment on “Redundancy principle and the role of extreme statistics in molecular and cellular biology” by Z. Schuss, et al (2019) Phys Life Rev 28:83–84. https://doi.org/10.1016/j.plrev.2019.02.002

    Google Scholar 

  • McKenzie H, Lewis M, Merrill E (2009) First passage time analysis of animal movement and insights into the functional response. Bull Math Biol 71(1):107–129

    MathSciNet  MATH  Google Scholar 

  • Meerson B, Redner S (2015) Mortality, redundancy, and diversity in stochastic search. Phys Rev Lett 114(19):198101

    Google Scholar 

  • Muratov C, Shvartsman S (2008) Boundary homogenization for periodic arrays of absorbers. Multiscale Model Simul 7(1):44–61

    MathSciNet  MATH  Google Scholar 

  • Peng Z, Nadarajah S (2012) Convergence rates for the moments of extremes. Bull Korean Math Soc 49(3):495–510

    MathSciNet  MATH  Google Scholar 

  • Pickands J (1968) Moment convergence of sample extremes. Ann Math Stat 39(3):881–889

    MathSciNet  MATH  Google Scholar 

  • Redner S, Meerson B (2014) First invader dynamics in diffusion-controlled absorption. J Stat Mech 6:P06019

    Google Scholar 

  • Redner S, Meerson B (2019) Redundancy, extreme statistics and geometrical optics of brownian motion. comment on “Redundancy principle and the role of extreme statistics in molecular and cellular biology” by Z. Schuss. Physics of life reviews 28:80–82. https://doi.org/10.1016/j.plrev.2019.01.020

    Article  Google Scholar 

  • Reynaud K, Schuss Z, Rouach N, Holcman D (2015) Why so many sperm cells? Commun Integr Biol 8(3):e1017156. https://doi.org/10.1080/19420889.2015.1017156

    Article  Google Scholar 

  • Ro S, Kim YW (2017) Parallel random target searches in a confined space. Phys Rev E 96(1):012143

    Google Scholar 

  • Rupprecht JF, Bénichou O, Grebenkov D, Voituriez R (2015) Exit time distribution in spherically symmetric two-dimensional domains. J Stat Phys 158(1):192–230

    MathSciNet  MATH  Google Scholar 

  • Rusakov DA, Savtchenko LP (2019) Extreme statistics may govern avalanche-type biological reactions: comment on “Redundancy principle and the role of extreme statistics in molecular and cellular biology” by Z Schuss. Phys Life Rev, K Basnayake, D Holcman. https://doi.org/10.1016/j.plrev.2019.02.001

    Book  Google Scholar 

  • Schuss Z, Basnayake K, Holcman D (2019) Redundancy principle and the role of extreme statistics in molecular and cellular biology. Phys Life Rev. https://doi.org/10.1016/j.plrev.2019.01.001

    Article  MATH  Google Scholar 

  • Sokolov IM (2019) Extreme fluctuation dominance in biology: On the usefulness of wastefulness: comment on “Redundancy principle and the role of extreme statistics in molecular and cellular biology” by Z. Schuss, K. Basnayake and D. Holcman. Phys Life Rev. https://doi.org/10.1016/j.plrev.2019.03.003

    Google Scholar 

  • Tamm MV (2019) Importance of extreme value statistics in biophysical contexts: comment on “Redundancy principle and the role of extreme statistics in molecular and cellular biology”. Phys Life Rev. https://doi.org/10.1016/j.plrev.2019.03.001

    Article  Google Scholar 

  • van Beijeren H (2003) The uphill turtle race; on short time nucleation probabilities. J Stat Phys 110(3–6):1397–1410

    MATH  Google Scholar 

  • Wang SS, Alousi AA, Thompson SH (1995) The lifetime of inositol 1, 4, 5-trisphosphate in single cells. J Gener Physiol 105(1):149–171

    Google Scholar 

  • Weiss GH, Shuler KE, Lindenberg K (1983) Order statistics for first passage times in diffusion processes. J Stat Phys 31(2):255–278

    MathSciNet  MATH  Google Scholar 

  • Wolf A, Anderegg WRL, Pacala SW (2016) Optimal stomatal behavior with competition for water and risk of hydraulic impairment. Proc Natl Acad Sci 113(46):E7222–E7230

    Google Scholar 

  • Yang J, Kupka I, Schuss Z, Holcman D (2016) Search for a small egg by spermatozoa in restricted geometries. J Math Biol 73(2):423–446

    MathSciNet  MATH  Google Scholar 

  • Yuste S, Acedo L (2000) Diffusion of a set of random walkers in euclidean media. First passage times. J Phys A 33(3):507

    MATH  Google Scholar 

  • Yuste SB, Lindenberg K (1996) Order statistics for first passage times in one-dimensional diffusion processes. J Stat Phys 85(3–4):501–512

    MathSciNet  MATH  Google Scholar 

  • Yuste SB, Acedo L, Lindenberg K (2001) Order statistics for \(d\)-dimensional diffusion processes. Phys Rev E 64(5):052102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean D. Lawley.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was supported by the National Science Foundation (Grant Nos. DMS-1944574, DMS-1814832, and DMS-1148230).

Appendix

Appendix

In this appendix, we collect the proofs of the propositions and theorems of Sect. 3.

Proof of Proposition 1

This proposition merely collects basic results on Gumbel random variables, all of which follow directly from (11). \(\square \)

Proof of Proposition 2

Since most results in extreme value theory are formulated in terms of the maximum of a set of random variables, define

$$\begin{aligned} M_{N}:=\max \{-\tau _{1},\ldots ,-\tau _{N}\}=-T_{N}, \end{aligned}$$

and \(F(x)=\mathbb {P}(-\tau _{1}<x)=S(-x)\). If there exists normalizing constants \(\{a_{N}\}_{N\ge 1}\) and \(\{b_{N}\}_{N\ge 1}\) so that \((M_{N}-b_{N})/a_{N}\) converges in distribution as \(N\rightarrow \infty \) to a nontrivial random variable, then the distribution of that random variable can only be Frechet, Weibull, or Gumbel (Fisher and Tippett 1928). Since

$$\begin{aligned} x^{*} :=\sup \{x:F(x)<1\}=0<\infty , \end{aligned}$$

Theorem 1.2.1 in the book by De Haan and Ferreira (2007) ensures that the limiting distribution cannot be Frechet.

Furthermore, if the limiting distribution is Weibull, then Theorem 1.2.1 in (De Haan and Ferreira 2007) guarantees that there exists some \(\gamma <0\) so that

$$\begin{aligned} \lim _{t\rightarrow 0+}\frac{1-F(-tx)}{1-F(-t)} =\lim _{t\rightarrow 0+}\frac{1-S(tx)}{1-S(t)} =x^{-1/\gamma }\quad \text {for all }x>0. \end{aligned}$$
(33)

Now, it follows directly from (12) that \(S(t)=1-e^{-C/t+h(t)}\) for some function h(t) satisfying

$$\begin{aligned} \lim _{t\rightarrow 0+}th(t)=0. \end{aligned}$$
(34)

Therefore, we claim that (33) is violated with, for example, \(x=2\). To see this, note that

$$\begin{aligned} \lim _{t\rightarrow 0+}\frac{1-S(2t)}{1-S(t)} =\lim _{t\rightarrow 0+}e^{C/t+h(2t)-h(t)}. \end{aligned}$$

By (34), we are assured that

$$\begin{aligned} -\frac{C}{2t} \le h(t) \le \frac{C}{2t}\quad \text {for sufficiently small }t. \end{aligned}$$

Hence,

$$\begin{aligned} \lim _{t\rightarrow 0+}e^{C/t+h(2t)-h(t)} \ge \lim _{t\rightarrow 0+}e^{3C/(4t)}=+\infty , \end{aligned}$$

which indeed violates (33). Therefore, if the limiting distribution is nondegenerate, it must be Gumbel. \(\square \)

Proof of Proposition 3

Using the assumptions on h(t) in (13), a direct calculation shows that

$$\begin{aligned} \lim _{t\rightarrow 0+}\frac{\text {d}}{\text {d}t}\left( \frac{1-S_{0}(t)}{S_{0}'(t)}\right) =0. \end{aligned}$$

Therefore, Theorem 2.1.2 in (Falk et al. 2010) ensures that

$$\begin{aligned} \lim _{N\rightarrow \infty }(S_{0}(a_{N}x+b_{N}))^{N} =\exp (-e^{x}),\quad \text {for all }x\in \mathbb {R}, \end{aligned}$$
(35)

for some choice of normalizing constants \(\{(a_{N},b_{N})\}_{N\ge 1}\). Remark 1.1.9 in the book by De Haan and Ferreira (2007) implies we can take \(a_{N}\) and \(b_{N}\) as in (14).

Now, (35) is equivalent to

$$\begin{aligned} \lim _{N\rightarrow \infty }N \ln (S_{0}(a_{N}x+b_{N})) =-e^{x},\quad \text {for all }x\in \mathbb {R}. \end{aligned}$$

Hence, it must be the case that \(S_{0}(a_{N}x+b_{N})\rightarrow 1\) as \(N\rightarrow \infty \), and thus a straightforward application of L’Hospital’s rule gives

$$\begin{aligned} -\ln (S_{0}(a_{N}x+b_{N})) \sim 1-S_{0}(a_{N}x+b_{N})\quad \text {as }N\rightarrow \infty . \end{aligned}$$

Therefore, (35) is equivalent to

$$\begin{aligned} \lim _{N\rightarrow \infty }N(1-S_{0}(a_{N}x+b_{N})) =e^{x},\quad \text {for all }x\in \mathbb {R}. \end{aligned}$$
(36)

Now, \(1-S_{0}(t)\sim 1-S_{0}(t)\) as \(t\rightarrow 0+\) by assumption. Hence, (36) holds with \(S_{0}\) replaced by S, which then implies that (35) holds with \(S_{0}\) replaced by S, which completes the proof. \(\square \)

Proof of Theorem 1

The theorem follows from Proposition 3 upon calculating \(\{a_{N}\}_{N\ge 1}\) and \(\{b_{N}\}_{N\ge 1}\) in (16) for \(h(t)=\ln (At^{p})\) and using properties of the LambertW function (Corless et al. 1996). \(\square \)

Proof of Theorem 2

The theorem follows immediately from Theorem 1 and (18)-(19). \(\square \)

Proof of Theorem 3

By assumption, \(\mathbb {E}[T_{N}]<\infty \) for some \(N\ge 1\). Hence, if \(m\in (0,1)\), then \(\mathbb {E}[(T_{N})^{m}]\le 1+\mathbb {E}[T_{N}]<\infty \). If \(m\ge 1\), then it is straightforward to check that [see the proof of Proposition 2 in the work by Lawley (2020)]

$$\begin{aligned} \mathbb {E}[(T_{2^{m-1}N})^{m}]<\infty . \end{aligned}$$

Since \(\mathbb {E}[X^{m}]<\infty \), applying Theorem 2.1 in (Pickands 1968) completes the proof. \(\square \)

Proof of Theorem 4

The convergence in distribution in (21) and (23) follows immediately from Theorem 1 above and Theorem 3.5 in the book by Coles (2001). \(\square \)

Proof of Theorem 5

While convergence in distribution does not necessarily imply convergence of moments, it does imply convergence of moments if the sequence of random variables is uniformly integrable (Billingsley 2013). Hence, it is sufficient to prove that

$$\begin{aligned} \sup _{N}\mathbb {E}\Big [\Big (\frac{T_{k,N}-b_{N}}{a_{N}}\Big )^{2}\Big ] <\infty \end{aligned}$$
(37)

since (37) ensures that \(\{\frac{T_{k,N}-b_{N}}{a_{N}}\}_{N\ge 1}\) is uniformly integrable (Billingsley 2013).

By assumption, \(1-S(t)\sim At^{p}e^{-C/t}\) as \(t\rightarrow 0+\). Hence, there exists a \(\delta >0\) so that

$$\begin{aligned} 1-A_{1}t^{p}e^{-C/t} \le 1-S(t) \le 1-A_{0}t^{p}e^{-C/t},\quad \text {if }t\in (0,\delta ], \end{aligned}$$

where \(0<A_{0}<A<A_{1}\). Define the survival probability

$$\begin{aligned} S_{+}(t) ={\left\{ \begin{array}{ll} 1 &{}\quad t\le 0,\\ 1-A_{0}t^{p}e^{-C/t} &{}\quad t\in (0,\delta ],\\ S(t) &{}\quad t>\delta . \end{array}\right. } \end{aligned}$$

Define \(S_{-}(t)\) similarly with \(A_{0}\) replaced by \(A_{1}\). Hence, \(S_{-}(t)\le S(t)\le S_{+}(t)\) for all \(t\in \mathbb {R}\). Let \(\{U_{n}\}_{n\ge 1}\) be an iid sequence of random variables, each with a uniform distribution on [0, 1]. Define

$$\begin{aligned} \tau _{n}&:=S^{-1}(U_{n}),\\ \tau _{n}^{-}&:=S_{-}^{-1}(U_{n}),\\ \tau _{n}^{+}&:=S_{+}^{-1}(U_{n}), \end{aligned}$$

and

$$\begin{aligned} T_{k,N}&:=\min \big \{\{\tau _{1},\ldots ,\tau _{N}\}\backslash \cup _{j=1}^{k-1}\{T_{j,N}\}\big \},\quad k\in \{1,\ldots ,N\},\\ T_{k,N}^{\pm }&:=\min \big \{\{\tau _{1}^{\pm },\ldots ,\tau _{N}^{\pm }\}\backslash \cup _{j=1}^{k-1}\{T_{j,N}^{\pm }\}\big \},\quad k\in \{1,\ldots ,N\}, \end{aligned}$$

where \(T_{1,N}:=\min \{\tau _{1},\ldots ,\tau _{N}\}\) and \(T_{1,N}^{\pm }:=\min \{\tau _{1}^{\pm },\ldots ,\tau _{N}^{\pm }\}\). By construction, we have that

$$\begin{aligned} T_{k,N}^{-} \le T_{k,N} \le T_{k,N}^{+}\quad \text {almost surely}. \end{aligned}$$

Therefore, if \(1_{{\mathcal {A}}}\) denotes the indicator function on an event \({\mathcal {A}}\), then

$$\begin{aligned} \mathbb {E}\Big [\Big (\frac{T_{k,N}-b_{N}}{a_{N}}\Big )^{2}\Big ]&=\mathbb {E}\Big [\Big (\frac{T_{k,N}-b_{N}}{a_{N}}\Big )^{2}1_{T_{k,N}>b_{N}}\Big ] +\mathbb {E}\Big [\Big (\frac{T_{k,N}-b_{N}}{a_{N}}\Big )^{2}1_{T_{k,N}<b_{N}}\Big ]\\&\le \mathbb {E}\Big [\Big (\frac{T_{k,N}^{+}-b_{N}}{a_{N}}\Big )^{2}1_{T_{k,N}^{+}>b_{N}}\Big ] +\mathbb {E}\Big [\Big (\frac{T_{k,N}^{-}-b_{N}}{a_{N}}\Big )^{2}1_{T_{k,N}^{-}<b_{N}}\Big ]\\&\le \mathbb {E}\Big [\Big (\frac{T_{k,N}^{+}-b_{N}}{a_{N}}\Big )^{2}\Big ] +\mathbb {E}\Big [\Big (\frac{T_{k,N}^{-}-b_{N}}{a_{N}}\Big )^{2}\Big ]. \end{aligned}$$

Hence, it remains to show that

$$\begin{aligned} \sup _{N}\mathbb {E}\Big [\Big (\frac{T_{k,N}^{\pm }-b_{N}}{a_{N}}\Big )^{2}\Big ] <\infty . \end{aligned}$$

Now,

$$\begin{aligned} \mathbb {E}\Big [\Big (\frac{T_{k,N}^{\pm }-b_{N}}{a_{N}}\Big )^{2}\Big ]&=\int _{0}^{\infty }\mathbb {P}\Big (\Big (\frac{T_{k,N}^{\pm }-b_{N}}{a_{N}}\Big )^{2}>t\Big )\,\text {d}t\\&=\int _{0}^{\infty }\mathbb {P}(T_{k,N}^{\pm }-b_{N}>a_{N}\sqrt{t})\,\text {d}t +\int _{0}^{\infty }\mathbb {P}(b_{N}-T_{k,N}^{\pm }>a_{N}\sqrt{t})\,\text {d}t\\&=:I_{1}+I_{2}. \end{aligned}$$

Since \(T_{1,N}^{\pm }\le T_{k,N}^{\pm }\) almost surely for any \(k\in \{1,\ldots ,n\}\), we have that

$$\begin{aligned} I_{2} \le \int _{0}^{\infty }\mathbb {P}(b_{N}-T_{1,N}^{\pm }>a_{N}\sqrt{t})\,\text {d}t&\le \int _{0}^{\infty }\mathbb {P}\Big (\Big (\frac{T_{1,N}^{\pm }-b_{N}}{a_{N}}\Big )^{2}>t\Big )\,\text {d}t\\&=\mathbb {E}\Big [\Big (\frac{T_{1,N}^{\pm }-b_{N}}{a_{N}}\Big )^{2}\Big ]. \end{aligned}$$

Now, Theorem 3 implies that

$$\begin{aligned} \mathbb {E}\Big [\Big (\frac{T_{1,N}^{\pm }-b_{N}^{\pm }}{a_{N}^{\pm }}\Big )^{2}\Big ] \rightarrow \mathbb {E}[X^{2}]<\infty \quad \text {as }N\rightarrow \infty , \end{aligned}$$

where \(\{a_{N}^{\pm }\}_{N\ge 1}\) and \(\{b_{N}^{\pm }\}_{N\ge 1}\) are given by (16) with A replaced by \(A_{0}\) or \(A_{1}\). Now, it is straightforward to check that there exists \(\alpha ^{\pm }>0\) and \(\beta ^{\pm }\in \mathbb {R}\) so that

$$\begin{aligned} \frac{a_{N}^{\pm }}{a_{N}}\rightarrow \alpha ^{\pm } \quad \text {and}\quad \frac{b_{N}-b_{N}^{\pm }}{a_{N}}\rightarrow \beta ^{\pm }\quad \text {as }N\rightarrow \infty . \end{aligned}$$

Therefore, Proposition 1.1 and Remark 1 in the work by Peng and Nadarajah (2012) imply that \(\mathbb {E}[(\frac{T_{1,N}^{\pm }-b_{N}^{\pm }}{a_{N}^{\pm }})^{2}]\) converges to some finite constant as \(N\rightarrow \infty \). Hence,

$$\begin{aligned} \sup _{N}I_{2}<\infty . \end{aligned}$$

Moving to \(I_{1}\), note first that

$$\begin{aligned} \mathbb {P}(T_{k,N}^{\pm }>x) =\mathbb {P}(T_{1,N}^{\pm }>x) +\sum _{j=1}^{k-1}\mathbb {P}(T_{j,N}^{\pm }<x<T_{j+1,N}^{\pm }). \end{aligned}$$

Hence,

$$\begin{aligned} I_{1}&=\int _{0}^{\infty }\mathbb {P}(T_{1,N}^{\pm }>a_{N}\sqrt{t}+b_{N})\,\text {d}t +\sum _{j=1}^{k-1}\int _{0}^{\infty }\mathbb {P}(T_{j,N}^{\pm }<a_{N}\sqrt{t}+b_{N}<T_{j+1,N}^{\pm })\,\text {d}t\\&=:I_{3}+I_{4}. \end{aligned}$$

Now, \(I_{3}\) can be handled similarly to \(I_{2}\) to obtain

$$\begin{aligned} \sup _{N}I_{3}<\infty . \end{aligned}$$

Hence, it remains to show that \(\sup _{N}I_{4}<\infty \). Now, since \(\{\tau _{n}^{\pm }\}_{n\ge 1}\) are iid, it follows that

$$\begin{aligned} \mathbb {P}(T_{j,N}^{\pm }<x<T_{j+1,N}^{\pm }) ={N \atopwithdelims ()j}(1-S_{\pm }(x))^{j}(S_{\pm }(x))^{N-j},\;\text {if }j\in \{1,\ldots ,k-1\}. \end{aligned}$$

Hence,

$$\begin{aligned} I_{4} =\sum _{j=1}^{k-1}{N \atopwithdelims ()j}\int _{0}^{\infty }(1-S_{\pm }(a_{N}\sqrt{t}+b_{N}))^{j}(S_{\pm }(a_{N}\sqrt{t}+b_{N}))^{N-j}\,\text {d}t. \end{aligned}$$

An application of Laplace’s method with a movable maximum [see, for example, section 6.4 in the book by Bender and Orszag (2013)] shows that each term in this sum is bounded in N, and so the proof is complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawley, S.D. Distribution of extreme first passage times of diffusion. J. Math. Biol. 80, 2301–2325 (2020). https://doi.org/10.1007/s00285-020-01496-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-020-01496-9

Keywords

Mathematics Subject Classification

Navigation