Skip to main content
Log in

A structured population model of clonal selection in acute leukemias with multiple maturation stages

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Recent progress in genetic techniques has shed light on the complex co-evolution of malignant cell clones in leukemias. However, several aspects of clonal selection still remain unclear. In this paper, we present a multi-compartmental continuously structured population model of selection dynamics in acute leukemias, which consists of a system of coupled integro-differential equations. Our model can be analysed in a more efficient way than classical models formulated in terms of ordinary differential equations. Exploiting the analytical tractability of this model, we investigate how clonal selection is shaped by the self-renewal fraction and the proliferation rate of leukemic cells at different maturation stages. We integrate analytical results with numerical solutions of a calibrated version of the model based on real patient data. In summary, our mathematical results formalise the biological notion that clonal selection is driven by the self-renewal fraction of leukemic stem cells and the clones that possess the highest value of this parameter are ultimately selected. Moreover, we demonstrate that the self-renewal fraction and the proliferation rate of non-stem cells do not have a substantial impact on clonal selection. Taken together, our results indicate that interclonal variability in the self-renewal fraction of leukemic stem cells provides the necessary substrate for clonal selection to act upon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams P, Jasper H, Rudolph K (2015) Aging-induced stem cell mutations as drivers for disease and cancer. Cell Stem Cell 16(6):601–612

    Google Scholar 

  • Anderson K, Lutz C, van Delft F, Bateman C, Guo Y, Colman S, Kempski H, Moorman A, Titley I, Swansbury J, Kearney L, Enver T, Greaves M (2011) Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469:356–361

    Google Scholar 

  • Bacher U, Haferlach C, Kern W, Haferlach T, Schnittger S (2008) Prognostic relevance of FLT3-TKD mutations in AML: the combination matters-an analysis of 3082 patients. Blood 111(5):2527–2537

    Google Scholar 

  • Barles G, Mirrahimi S, Perthame B (2009) Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result. Methods Appl Anal 16(3):321–340

    MathSciNet  MATH  Google Scholar 

  • Belderbos M, Koster T, Ausema B, Jacobs S, Sowdagar S, Zwart E, de Bont E, de Haan G, Bystrykh L (2017) Clonal selection and asymmetric distribution of human leukemia in murine xenografts revealed by cellular barcoding. Blood 129(24):3210–3220

    Google Scholar 

  • Bonnet D, Dick J (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Google Scholar 

  • Busse J, Gwiazda P, Marciniak-Czochra A (2016) Mass concentration in a nonlocal model of clonal selection. J Math Biol 73(4):1001–1033

    MathSciNet  MATH  Google Scholar 

  • Calsina À, Cuadrado S, Desvillettes L, Raoul G (2013) Asymptotics of steady states of a selection-mutation equation for small mutation rate. Proc R Soc Edinb Sect A Math 143(6):1123–1146

    MathSciNet  MATH  Google Scholar 

  • Cartwright GE, Athens JW, Wintrobe MM (1964) The kinetics of granulopoiesis in normal man. Blood 24:780–803

    Google Scholar 

  • Chisholm RH, Lorenzi T, Lorz A (2016) Effects of an advection term in nonlocal Lotka-Volterra equations. Commun Math Sci 14(4):1181–1188

    MathSciNet  MATH  Google Scholar 

  • Choi S, Henderson M, Kwan E, Beesley A, Sutton R, Bahar A, Giles J, Venn N, Pozza L, Baker D, Marshall G, Kees U, Haber M, Norris M (2007) Relapse in children with acute lymphoblastic leukemia involving selection of a preexisting drug-resistant subclone. Blood 110:632–639

    Google Scholar 

  • Cronkite EP (1979) Kinetics of granulopoiesis. Clin Haematol 8:351–370

    Google Scholar 

  • Delitala M, Lorenzi T (2012) Asymptotic dynamics in continuous structured populations with mutations, competition and mutualism. J Math Anal Appl 389(1):439–451

    MathSciNet  MATH  Google Scholar 

  • Desvillettes L, Jabin PE, Mischler S, Raoul G (2008) On selection dynamics for continuous structured populations. Commun Math Sci 6(3):729–747

    MathSciNet  MATH  Google Scholar 

  • Diekmann O, Jabin P-E, Mischler S, Perthame B (2005) The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach. Theor Popul Biol 67(4):257–271

    MATH  Google Scholar 

  • Ding L, Ley T, Larson D, Miller C, Koboldt D, Welch J, Ritchey J, Young M, Lamprecht T, McLellan M, McMichael J, Wallis J, Lu C, Shen D, Harris C, Dooling D, Fulton R, Fulton L, Chen K, Schmidt H, Kalicki-Veizer J, Magrini V, Cook L, McGrath S, Vickery T, Wendl M, Heath S, Watson M, Link D, Tomasson M, Shannon W, Payton J, Kulkarni S, Westervelt P, Walter M, Graubert T, Mardis E, Wilson R, DiPersio J (2012) Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481:506–510

    Google Scholar 

  • Doulatov S, Notta F, Rice K, Howell L, Zelent A, Licht J, Dick J (2009) PLZF is a regulator of homeostatic and cytokine-induced myeloid development. Genes Dev 23(17):2076–2087

    Google Scholar 

  • Doumic-Jauffret M, Marciniak-Czochra A, Perthame B, Zubelli J (2011) A structured population model of cell differentiation. SIAM J Appl Math 71:1918–1940

    MathSciNet  MATH  Google Scholar 

  • Eppert K, Takenaka K, Lechman E, Waldron L, Nilsson B, van Galen P, Metzeler K, Poeppl A, Ling V, Beyene J, Canty A, Danska J, Bohlander S, Buske C, Minden M, Golub T, Jurisica I, Ebert B, Dick J (2011) Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 17(9):1086–1093

    Google Scholar 

  • Gale R, Green C, Allen C, Mead A, Burnett A, Hills R, Linch DC P (2008) Medical Research Council Adult Leukaemia Working. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood 111(5):2776–2784

    Google Scholar 

  • Getto P, Marciniak-Czochra A, Nakata Y, Vivanco M (2013) Global dynamics of two-compartment models for cell production systems with regulatory mechanisms. Math Biosci 245:258–268

    MathSciNet  MATH  Google Scholar 

  • Ghosh J, Kobayashi M, Ramdas B, Chatterjee A, Ma P, Mali R, Carlesso N, Liu Y, Plas D, Chan R, Kapur R (2016) S6k1 regulates hematopoietic stem cell self-renewal and leukemia maintenance. J Clin Investig 126(7):2621–2625

    Google Scholar 

  • Gwiazda P, Jamroz G, Marciniak-Czochra A (2012) Models of discrete and continuous cell differentiation in the framework of transport equation. SIAM J Math Anal 44:1103–1133

    MathSciNet  MATH  Google Scholar 

  • Heuser M, Sly L, Argiropoulos B, Kuchenbauer F, Lai C, Weng A, Leung M, Lin G, Brookes C, Fung S, Valk P, Delwel R, Loewenberg B, Krystal G, Humphries R (2009) Modeling the functional heterogeneity of leukemia stem cells: role of STAT5 in leukemia stem cell self-renewal. Blood 114(19):3983–3993

    Google Scholar 

  • Hirsch P, Zhang Y, Tang R, Joulin V, Boutroux H, Pronier E, Moatti H, Flandrin P, Marzac C, Bories D, Fava F, Mokrani H, Betems A, Lorre F, Favier R, Feger F, Mohty M, Douay L, Legrand O, Bilhou-Nabera C, Louache F, Delhommeau F (2016) Genetic hierarchy and temporal variegation in the clonal history of acute myeloid leukaemia. Nat Commun 7:12475

    Google Scholar 

  • Hope K, Jin L, Dick J (2004) Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 5:738–743

    Google Scholar 

  • Jan M, Majeti R (2013) Clonal evolution of acute leukemia genomes. Oncogene 32:135–140

    Google Scholar 

  • Jung N, Dai B, Gentles A, Majeti R, Feinberg A (2015) An LSC epigenetic signature is largely mutation independent and implicates the HOXA cluster in AML pathogenesis. Nat Commun 6:8489

    Google Scholar 

  • Kikushige Y, Miyamoto T, Yuda J, Jabbarzadeh-Tabrizi S, Shima T, Takayanagi S, Niiro H, Yurino A, Miyawaki K, Takenaka K, Iwasaki H, Akashi K (2015) A TIM-3/Gal-9 autocrine stimulatory loop drives self-renewal of human myeloid leukemia stem cells and leukemic progression. Cell Stem Cell 17(3):341–52

    Google Scholar 

  • Knauer F (2012) Dynamical behaviour of a single feedback-controlled haematopoietic model. MS. thesis, Heidelberg University

  • Knauer F, Stiehl T, Marciniak-Czochra A (2019) Oscillations in a white blood cell production model with multiple differentiation stages. arxiv:1812.02017. Submitted

  • Kondo S, Okamura S, Asano Y, Harada M, Niho Y (1991) Human granulocyte colony-stimulating factor receptors in acute myelogenous leukemia. Eur J Haematol 46:223–230

    Google Scholar 

  • Lagunas-Rangel F, Chávez-Valencia V (2017) FLT3-ITD and its current role in acute myeloid leukaemia. Med Oncol 34(6):114

    Google Scholar 

  • Layton J, Hockman H, Sheridan W, Morstyn G (1989) Evidence for a novel in vivo control mechanism of granulopoiesis: mature cell-related control of a regulatory growth factor. Blood 74:1303–1307

    Google Scholar 

  • Ley T, Mardis E, Ding L, Fulton B, McLellan M, Chen K, Dooling D, Dunford-Shore B, McGrath S, Hickenbotham M, Cook L, Abbott R, Larson D, Koboldt D, Pohl C, Smith S, Hawkins A, Abbott S, Locke D, Hillier L, Miner T, Fulton L, Magrini V, Wylie T, Glasscock J, Conyers J, Sander N, Shi X, Osborne J, Minx P, Gordon D, Chinwalla A, Zhao Y, Ries R, Payton J, Westervelt P, Tomasson M, Watson M, Baty J, Ivanovich J, Heath S, Shannon W, Nagarajan R, Walter M, Link D, Graubert T, DiPersio J, Wilson R (2008) DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456(7218):66–72

    Google Scholar 

  • Lorenzi T, Lorz A, Restori G (2014) Asymptotic dynamics in populations structured by sensitivity to global warming and habitat shrinking. Acta Appl Math 131(1):49–67

    MathSciNet  MATH  Google Scholar 

  • Lorz A, Mirrahimi S, Perthame B (2011) Dirac mass dynamics in multidimensional nonlocal parabolic equations. Commun Partial Differ Equ 36(6):1071–1098

    MathSciNet  MATH  Google Scholar 

  • Lutz C, Hoang V, Ho A (2013a) Identifying leukemia stem cells-is it feasible and does it matter? Cancer Lett 338:10–14

    Google Scholar 

  • Lutz C, Woll P, Hall G, Castor A, Dreau H, Cazzaniga G, Zuna J, Jensen C, Clark S, Biondi A, Mitchell C, Ferry H, Schuh A, Buckle V, Jacobsen S, Enver T (2013b) Quiescent leukaemic cells account for minimal residual disease in childhood lymphoblastic leukaemia. Leukemia 27:1204–1207

    Google Scholar 

  • Malinowska I, Stelmaszczyk-Emmel A, Wasik M, Rokicka-Milewska R (2002) Apoptosis and pH of blasts in acute childhood leukemia. Med Sci Monit 8:CR441–CR447

    Google Scholar 

  • Marciniak-Czochra A, Stiehl T, Jäger W, Ho AD, Wagner W (2009) Modeling of asymmetric cell division in hematopoietic stem cells–regulation of self-renewal is essential for efficient repopulation. Stem Cells Dev 18:377–385

    Google Scholar 

  • Marciniak-Czochra A, Mikelic A, Stiehl T (2018) Renormalization group second order approximation for singularly perturbed nonlinear ordinary differential equations. Math Methods Appl Sci 41:5691–5710

    MathSciNet  MATH  Google Scholar 

  • Metzeler K, Maharry K, Kohlschmidt J, Volinia S, Mrozek K, Becker H, Nicolet D, Whitman S, Mendler J, Schwind S, Eisfeld A, Wu Y, Powell B, Carter T, Wetzler M, Kolitz J, Baer M, Carroll A, Stone R, Caligiuri M, Marcucci G, Bloomfield C (2013) A stem cell-like gene expression signature associates with inferior outcomes and a distinct microRNA expression profile in adults with primary cytogenetically normal acute myeloid leukemia. Leukemia 27(10):2023–2031

    Google Scholar 

  • Morgan D, Desai A, Edgar B, Glotzer M, Heald R, Karsenti E, Nasmyth K, Pines J, Sherr C (2007) The cell cycle. In: Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter R (eds) Molecular biology of the cell, 5th edn. Garland Science, New York

    Google Scholar 

  • Nakata Y, Getto P, Marciniak-Czochra A, Alarcon T (2012) Stability analysis of multi-compartment models for cell production systems. J Biol Dyn 6(Suppl 1):2–18

    MathSciNet  Google Scholar 

  • Naoe T, Kiyoi H (2013) Gene mutations of acute myeloid leukemia in the genome era. Int J Hematol 97(2):165–174

    Google Scholar 

  • Noetzli J, Gavillet M, Masouridi-Levrat S, Duchosal M, Spertini O (2017) T315I clone selection in a Ph+ all patient under low-dose ponatinib maintenance. Clin Case Rep 5(8):1320–1322

    Google Scholar 

  • Perthame B, Barles G (2008) Dirac concentrations in lotka-volterra parabolic pdes. Indiana Univ Math J 57(7):3275–3301

    MathSciNet  MATH  Google Scholar 

  • Pui C, Yang J, Hunger S, Pieters R, Schrappe M, Biondi A, Vora A, Baruchel A, Silverman L, Schmiegelow K, Escherich G, Horibe K, Benoit Y, Izraeli S, Yeoh A, Liang D, Downing J, Evans W, Relling M, Mullighan C (2015) Childhood acute lymphoblastic leukemia: progress through collaboration. J Clin Oncol 33(27):2938–2948

    Google Scholar 

  • Raoul G (2011) Long time evolution of populations under selection and vanishing mutations. Acta Appl Math 114(1):1–14

    MathSciNet  MATH  Google Scholar 

  • Reya T, Morrison S, Clarke M, Weissman I (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Google Scholar 

  • Roelofs H, de Pauw E, Zwinderman A, Opdam S, Willemze R, Tanke H, Fibbe W (2003) Homeostasis of telomere length rather than telomere shortening after allogeneic peripheral blood stem cell transplantation. Blood 101(1):358–62

    Google Scholar 

  • Savitskiy V, Shman T, Potapnev M (2003) Comparative measurement of spontaneous apoptosis in pediatric acute leukemia by different techniques. Cytom Part B Clin Cytom 56:16–22

    Google Scholar 

  • Shepherd BE, Guttorp P, Lansdorp PM, Abkowitz JL (2004) Estimating human hematopoietic stem cell kinetics using granulocyte telomere lengths. Exp Hematol 32:1040–1050

    Google Scholar 

  • Shinjo K, Takeshita A, Ohnishi K, Ohno R (1997) Granulocyte colony-stimulating factor receptor at various stages of normal and leukemic hematopoietic cells. Leukemia Lymphoma 25:37–46

    Google Scholar 

  • Stiehl T, Marciniak-Czochra A (2011) Characterization of stem cells using mathematical models of multistage cell lineages. Math Comput Model 53:1505–1517

    MathSciNet  MATH  Google Scholar 

  • Stiehl T, Marciniak-Czochra A (2012) Mathematical modelling of leukemogenesis and cancer stem cell dynamics. Math Model Nat Phenom 7:166–202

    MathSciNet  MATH  Google Scholar 

  • Stiehl T, Marciniak-Czochra A (2017) Stem cell self-renewal in regeneration and cancer: insights from mathematical modeling. Curr Opin Syst Biol 5:112–120

    Google Scholar 

  • Stiehl T, Marciniak-Czochra A (2019) How to characterize stem cells? contributions from mathematical modeling. Curr Stem Cell Rep. https://doi.org/10.1007/s40778-019-00155-0

    Article  MATH  Google Scholar 

  • Stiehl T, Baran N, Ho A, Marciniak-Czochra A (2014a) Clonal selection and therapy resistance in acute leukaemias: mathematical modelling explains different proliferation patterns at diagnosis and relapse. J R Soc Interface 11:20140079

    Google Scholar 

  • Stiehl T, Ho A, Marciniak-Czochra A (2014b) Assessing hematopoietic (stem-) cell behavior during regenerative pressure. Adv Exp Med Biol 844:347–367

    Google Scholar 

  • Stiehl T, Ho A, Marciniak-Czochra A (2014c) The impact of CD34+ cell dose on engraftment after SCTs: personalized estimates based on mathematical modeling. Bone Marrow Transpl 49:30–37

    Google Scholar 

  • Stiehl T, Baran N, Ho A, Marciniak-Czochra A (2015) Cell division patterns in acute myeloid leukemia stem-like cells determine clinical course: a model to predict patient survival. Cancer Res 75:940–949

    Google Scholar 

  • Stiehl T, Lutz C, Marciniak-Czochra A (2016) Emergence of heterogeneity in acute leukemias. Biol Direct 11(1):51

    Google Scholar 

  • Stiehl T, Ho A, Marciniak-Czochra A (2018) Cytokine response of leukemic cells has impact on patient prognosis: insights from mathematical modeling. Sci Rep 8:2809

    Google Scholar 

  • van Delft F, Horsley S, Colman S, Anderson K, Bateman C, Kempski H, Zuna J, Eckert C, Saha V, Kearney L, Ford A, Greaves M (2011) Clonal origins of relapse in ETV6-RUNX1 acute lymphoblastic leukemia. Blood 117:6247–6254

    Google Scholar 

  • Wang W, Stiehl T, Raffel S, Hoang V, Hoffmann I, Poisa-Beiro L, Saeed B, Blume R, Manta L, Eckstein V, Bochtler T, Wuchter P, Essers M, Jauch A, Trumpp A, Marciniak-Czochra A, Ho A, Lutz C (2017) Reduced hematopoietic stem cell frequency predicts outcome in acute myeloid leukemia. Haematologica 102(9):1567–1577

    Google Scholar 

  • Wang Y, Krivtsov A, Sinha A, North T, Goessling W, Feng Z, Zon L, Armstrong S (2010) The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 327(5973):1650–1653

    Google Scholar 

  • Werner B, Dingli D, Traulsen A (2013) A deterministic model for the occurrence and dynamics of multiple mutations in hierarchically organized tissues. J R Soc Interface 10(85):20130349

    Google Scholar 

  • Wu B, Jug R, Luedke C, Su P, Rehder C, McCall C, Lagoo A, Wang E (2017) Lineage switch between b-lymphoblastic leukemia and acute myeloid leukemia intermediated by ’occult’ myelodysplastic neoplasm: two cases of adult patients with evidence of genomic instability and clonal selection by chemotherapy. Am J Clin Pathol 148(2):136–147

    Google Scholar 

  • Yamamoto R, Morita Y, Ooehara J, Hamanaka S, Onodera M, Rudolph K, Ema H, Nakauchi H (2013) Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154(5):1112–1126

    Google Scholar 

  • Yassin E, Abdul-Nabi A, Takeda A, Yaseen N (2010) Effects of the NUP98-DDX10 oncogene on primary human CD34+ cells: role of a conserved helicase motif. Leukemia 24(5):1001–1011

    Google Scholar 

Download references

Acknowledgements

TS and AM-C were supported by research funding from the German Research Foundation DFG (SFB 873; subproject B08). TL gratefully acknowledges support from the Heidelberg Graduate School (HGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Marciniak-Czochra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Multi-compartmental ODE model

In a number of previous papers (Stiehl et al. 2014a, 2015, 2016, 2018; Stiehl and Marciniak-Czochra 2012), it was shown that mathematical models defined in the framework of the following ODE system can effectively recapitulate clinical data from leukemia patients

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle {\frac{\mathrm{d}}{\mathrm{d} t} N^j_1(t) = \left( \frac{2 \, a^j_{1}}{1 + K \, Z_M(t)} - 1 \right) \, p^j_1 \, N^j_1(t),} \\ \\ \displaystyle {\frac{\mathrm{d}}{\mathrm{d} t} N^j_i(t) = 2 \, \left( 1 - \frac{a^j_{i-1}}{1 + K \, Z_M(t)} \right) \, p^j_{i-1} \, N^j_{i-1}(t)} \\ \displaystyle {\phantom {\frac{\mathrm{d}}{\mathrm{d} t} N^j_i(t) =} + \left( \frac{2 \, a^j_{i}}{1 + K \, Z_M(t)} - 1 \right) \, p^j_i \, N^j_i(t),} \\ \\ \displaystyle {\frac{\mathrm{d}}{\mathrm{d} t} N^j_M(t) = 2 \, \left( 1 - \frac{a^j_{M-1}}{1 + K \, Z_M(t)} \right) \, p^j_{M-1} \, N^j_{M-1}(t) - d \, N^j_M(t),} \end{array} \right. \end{aligned}$$
(68)

with \(i=2, \ldots , M-1\), \(j=0, \ldots , J\) and \({Z_M(t) = {\sum \nolimits _{j=0}^J} N^j_M(t)}\).

The index i denotes the cell maturation stage while the index j indicates to which leukemic clone the cells belong. In particular, the stem-cell compartment is labelled by the index \(i=1\), the indices \(i=2, \ldots , M-1\) correspond to increasingly mature progenitor-cell compartments and the mature-cell/blast compartment is labelled by the index \(i=M\). Moreover, the index \(j=0\) refers to healthy cells, whereas the different leukemic clones are labelled by the indices \(j=1, \ldots , J\).

In the system of ODEs (68), the function \(N^j_i(t)\) models the density of cells of clone j at the maturation stage i at the time instant \(t \ge 0\). Cells in the compartment \(i=M\) do not divide and are cleared from the system at rate \(d>0\), which is assumed to be the same for healthy and leukemic cells (Busse et al. 2016; Malinowska et al. 2002; Savitskiy et al. 2003; Stiehl et al. 2014a, 2018). The parameters \(p^j_i > 0\) and \(a^j_i > 0\) model, respectively, the proliferation rate and the self-renewal fraction of cells of clone j at the maturation stage i. Coherently with biological findings (Kondo et al. 1991; Layton et al. 1989; Shinjo et al. 1997), the terms \(a^j_i\) are multiplied by the factor \(\frac{1}{1 + K Z_M(t)}\) to model the fact that the signal which promotes the self-renewal of dividing cells is absorbed by mature cells and leukemic blasts at a rate that depends on the total density of these cells \(Z_M(t)\). The parameter \(K>0\) is related to the degradation rate of the feedback signal by mature cells and leukemic blasts. This has proved to be a biologically consistent way of modelling the effects of feedback signals that control cell self-renewal (Marciniak-Czochra et al. 2009; Stiehl et al. 2014c, 2018; Stiehl and Marciniak-Czochra 2011, 2012). In principle, the effects of feedback signals that control cell proliferation could also be included. However, it has been demonstrated that such signals have little impact on the dynamics of the blood system (Marciniak-Czochra et al. 2009; Stiehl et al. 2014b, c).

A version of the ODE model (68) with only one leukemic clone and three maturation stages (i.e. \(M=3\) and \(J=1\)) has been fully analysed by Stiehl and Marciniak-Czochra (2012), while a two compartmental version of the model for healthy hematopoiesis (i.e. \(M=2\) and \(J=0\)) has been analysed by Getto et al. (2013); Nakata et al. (2012); Stiehl and Marciniak-Czochra (2011). Possible applications of this model to clinical data can be found in the works by Stiehl et al. (2014a, 2015), whereas applications to healthy hematopoiesis are provided in the publications by Stiehl et al. (2014b, c). Finally, a version of this model with a continuous differentiation structure has been proposed and studied by Doumic-Jauffret et al. (2011).

Proof of the uniform upper bounds (15)

In this appendix we prove the upper bounds (15) through a suitable development of the method of proof presented in (Busse et al. 2016). Using the system of IDEs (7), straightforward calculations give the following ODEs

$$\begin{aligned} \varepsilon \, \frac{\mathrm{d}}{\mathrm{d}t}\frac{\rho _{1 \, \varepsilon }}{\rho _{2 \, \varepsilon }}= & {} \frac{1}{\rho _{2 \, \varepsilon }} \int _0^1 P_{1}(\rho _{M \varepsilon }(t),x)\, n_{1 \varepsilon } \, \mathrm{d}x \nonumber \\&- \frac{\rho _{1 \, \varepsilon }}{\rho ^2_{2 \, \varepsilon }}\! \int _0^1 Q_{1}(\rho _{M \varepsilon }(t),x)\, n_{1 \varepsilon } \, \mathrm{d}x \!-\! \frac{\rho _{1 \, \varepsilon }}{\rho ^2_{2 \, \varepsilon }} \int _0^1 P_{2}(\rho _{M \varepsilon }(t),x)\, n_{2 \varepsilon } \, \mathrm{d}x, \qquad \end{aligned}$$
(69)
$$\begin{aligned} \varepsilon \, \frac{\mathrm{d}}{\mathrm{d}t}\frac{\rho _{i \, \varepsilon }}{\rho _{i+1 \, \varepsilon }}\!= & {} \! \frac{1}{\rho _{i+1 \, \varepsilon }} \int _0^1 Q_{i-1}(\rho _{M \varepsilon }(t),x)\, n_{i-1 \varepsilon } \, \mathrm{d}x \!+\! \frac{1}{\rho _{i+1 \, \varepsilon }} \int _0^1 P_{i}(\rho _{M \varepsilon }(t),x)\, n_{i \varepsilon } \, \mathrm{d}x \nonumber \\&- \frac{\rho _{i \, \varepsilon }}{\rho ^2_{i+1 \, \varepsilon }} \int _0^1 Q_{i}(\rho _{M \varepsilon }(t),x)\, n_{i \varepsilon } \, \mathrm{d}x \nonumber \\&- \frac{\rho _{i \, \varepsilon }}{\rho ^2_{i+1 \, \varepsilon }} \int _0^1 P_{i+1}(\rho _{M \varepsilon }(t),x)\, n_{i+1 \varepsilon } \, \mathrm{d}x, \quad \text {for } \; i = 2, \ldots , M-2 \end{aligned}$$
(70)

and

$$\begin{aligned} \varepsilon \, \frac{\mathrm{d}}{\mathrm{d}t}\frac{\rho _{M-1 \, \varepsilon }}{\rho _{M \, \varepsilon }}= & {} \frac{1}{\rho _{M \, \varepsilon }} \int _0^1 Q_{M-2}(\rho _{M \varepsilon }(t),x)\, n_{M-2 \varepsilon } \, \mathrm{d}x \nonumber \\&+ \frac{1}{\rho _{M \, \varepsilon }} \int _0^1 P_{M-1}(\rho _{M \varepsilon }(t),x)\, n_{M-1 \varepsilon } \, \mathrm{d}x \nonumber \\&- \frac{\rho _{M-1 \, \varepsilon }}{\rho ^2_{M \, \varepsilon }} \int _0^1 Q_{M-1}(\rho _{M \varepsilon }(t),x)\, n_{M-1 \varepsilon } \, \mathrm{d}x + d \, \frac{\rho _{M-1 \, \varepsilon }}{\rho _{M \, \varepsilon }}. \end{aligned}$$
(71)

Under assumptions (2)–(4), for all \(i = 1, \ldots , M-1\) we have

$$\begin{aligned}&P_{i}(\rho _{M \, \varepsilon }(t),x) > - \Vert p_{i}\Vert _{\mathrm{L}^\infty ([0,1])},\\&\quad P_{i}(\rho _{M \, \varepsilon }(t),x) \le 2 \, \Vert a_{i}\Vert _{\mathrm{L}^\infty ([0,1])} \Vert p_{i}\Vert _{\mathrm{L}^\infty ([0,1])} =: {\overline{P}}_i, \end{aligned}$$

and

$$\begin{aligned}&Q_{i}(\rho _{M \, \varepsilon }(t),x) \ge 2 \, \left( 1-\Vert a_{i}\Vert _{\mathrm{L}^\infty ([0,1])}\right) \inf _{x \in [0,1]} p_{i} =: {\underline{Q}}_i > 0,\\&Q_{i}(\rho _{M \, \varepsilon }(t),x) \le 2 \, \Vert p_{i}\Vert _{\mathrm{L}^\infty ([0,1])}, \end{aligned}$$

for all \(t \ge 0\) and all \(x \in [0,1]\). Hence, estimating from above the right-hand sides of the ODEs (69)–(71) using the above estimates on \(P_i\) and \(Q_i\) along with the non-negativity of \(n_{i \, \varepsilon }\) and \(\rho _{i \, \varepsilon }\) for all \(i = 1, \ldots , M\) gives the following differential inequalities

$$\begin{aligned} \varepsilon \, \frac{\mathrm{d}}{\mathrm{d}t}\frac{\rho _{1 \, \varepsilon }}{\rho _{2 \, \varepsilon }}\le & {} {\overline{P}}_1 \, \frac{\rho _{1 \, \varepsilon }}{\rho _{2 \, \varepsilon }} - {\underline{Q}}_1 \, \frac{\rho ^2_{1 \, \varepsilon }}{\rho ^2_{2 \, \varepsilon }} + \Vert p_{2}\Vert _{\mathrm{L}^\infty ([0,1])} \, \frac{\rho _{1 \, \varepsilon }}{\rho _{2 \, \varepsilon }}\nonumber \\\le & {} \left[ \left( {\overline{P}}_1 + \Vert p_{2}\Vert _{\mathrm{L}^\infty ([0,1])}\right) - {\underline{Q}}_1 \frac{\rho _{1 \, \varepsilon }}{\rho _{2 \, \varepsilon }}\right] \frac{\rho _{1 \, \varepsilon }}{\rho _{2 \, \varepsilon }}, \end{aligned}$$
(72)
$$\begin{aligned} \varepsilon \, \frac{\mathrm{d}}{\mathrm{d}t}\frac{\rho _{i \, \varepsilon }}{\rho _{i+1 \, \varepsilon }}\le & {} 2 \, \Vert p_{i-1}\Vert _{\mathrm{L}^\infty ([0,1])} \, \frac{\rho _{i-1 \, \varepsilon }}{\rho _{i+1 \, \varepsilon }} + {\overline{P}}_i \, \frac{\rho _{i \, \varepsilon }}{\rho _{i+1 \, \varepsilon }} - {\underline{Q}}_i \, \frac{\rho ^2_{i \, \varepsilon }}{\rho ^2_{i+1 \, \varepsilon }} \nonumber \\&+ \Vert p_{i+1}\Vert _{\mathrm{L}^\infty ([0,1])} \frac{\rho _{i \, \varepsilon }}{\rho _{i+1 \, \varepsilon }} \nonumber \\\le & {} \left[ \left( 2 \, \Vert p_{i-1}\Vert _{\mathrm{L}^\infty ([0,1])} \frac{\rho _{i-1 \, \varepsilon }}{\rho _{i \, \varepsilon }} + {\overline{P}}_i + \Vert p_{i+1}\Vert _{\mathrm{L}^\infty ([0,1])}\right) \right. \nonumber \\&\left. - {\underline{Q}}_i \frac{\rho _{i \, \varepsilon }}{\rho _{i+1 \, \varepsilon }}\right] \frac{\rho _{i \, \varepsilon }}{\rho _{i+1 \, \varepsilon }} \qquad \end{aligned}$$
(73)

for \(i = 2, \ldots , M-2\),

$$\begin{aligned} \varepsilon \, \frac{\mathrm{d}}{\mathrm{d}t}\frac{\rho _{M-1 \, \varepsilon }}{\rho _{M \, \varepsilon }}\le & {} 2 \, \Vert p_{M-2}\Vert _{\mathrm{L}^\infty ([0,1])} \, \frac{\rho _{M-2 \, \varepsilon }}{\rho _{M \, \varepsilon }} + {\overline{P}}_{M-1} \, \frac{\rho _{M-1 \, \varepsilon }}{\rho _{M \, \varepsilon }} \nonumber \\&- {\underline{Q}}_{M-1} \, \frac{\rho ^2_{M-1 \, \varepsilon }}{\rho ^2_{M \, \varepsilon }} + d \, \frac{\rho _{M-1 \, \varepsilon }}{\rho _{M \, \varepsilon }} \nonumber \\\le & {} \left[ \left( 2 \, \Vert p_{M-2}\Vert _{\mathrm{L}^\infty ([0,1])} \frac{\rho _{M-2 \, \varepsilon }}{\rho _{M-1 \, \varepsilon }} + {\overline{P}}_{M-1} + d\right) \right. \nonumber \\&\left. - {\underline{Q}}_{M-1} \frac{\rho _{M-1 \, \varepsilon }}{\rho _{M \, \varepsilon }}\right] \frac{\rho _{M-1 \, \varepsilon }}{\rho _{M \, \varepsilon }}. \qquad \end{aligned}$$
(74)

The differential inequality (72) yields

$$\begin{aligned} \frac{\rho _{1 \, \varepsilon }(t)}{\rho _{2 \, \varepsilon }(t)} \le \max \left( \frac{\Vert n^0_{1}\Vert _{\mathrm{L}^\infty ([0,1])}}{\Vert n^0_{2}\Vert _{\mathrm{L}^\infty ([0,1])}}, \frac{{\overline{P}}_1 + \Vert p_{2}\Vert _{\mathrm{L}^\infty ([0,1])}}{{\underline{Q}}_1} \right) =: B_1, \end{aligned}$$
(75)

for all \(t \ge 0\). Substituting the estimate (75) into the differential inequality (73) for \(i=2\) we find

$$\begin{aligned}&\frac{\rho _{2 \, \varepsilon }(t)}{\rho _{3 \, \varepsilon }(t)} \nonumber \\&\quad \le \max \left( \frac{\Vert n^0_{2}\Vert _{\mathrm{L}^\infty ([0,1])}}{\Vert n^0_{3}\Vert _{\mathrm{L}^\infty ([0,1])}}, \frac{2 \, \Vert p_{1}\Vert _{\mathrm{L}^\infty ([0,1])} B_1 + {\overline{P}}_2 + \Vert p_{3}\Vert _{\mathrm{L}^\infty ([0,1])}}{{\underline{Q}}_2} \right) =: B_2,\nonumber \\ \end{aligned}$$
(76)

for all \(t \ge 0\). In a similar way, substituting the estimate (76) into the differential inequality (73) for \(i=3\) gives

$$\begin{aligned}&\frac{\rho _{3 \, \varepsilon }(t)}{\rho _{4 \, \varepsilon }(t)} \nonumber \\&\quad \le \max \left( \frac{\Vert n^0_{3}\Vert _{\mathrm{L}^\infty ([0,1])}}{\Vert n^0_{4}\Vert _{\mathrm{L}^\infty ([0,1])}}, \frac{2 \, \Vert p_{2}\Vert _{\mathrm{L}^\infty ([0,1])} B_2 + {\overline{P}}_3 + \Vert p_{4}\Vert _{\mathrm{L}^\infty ([0,1])}}{{\underline{Q}}_3} \right) =: B_3,\nonumber \\ \end{aligned}$$
(77)

for all \(t \ge 0\). Using a bootstrap argument based on the method of proof that we have used for the case \(i=3\), one can prove that

$$\begin{aligned}&\frac{\rho _{i \, \varepsilon }(t)}{\rho _{i+1 \, \varepsilon }(t)} \nonumber \\&\quad \le \max \left( \frac{\Vert n^0_{i}\Vert _{\mathrm{L}^\infty ([0,1])}}{\Vert n^0_{i+1}\Vert _{\mathrm{L}^\infty ([0,1])}}, \frac{2 \, \Vert p_{i-1}\Vert _{\mathrm{L}^\infty ([0,1])} B_{i-1} + {\overline{P}}_i + \Vert p_{i+1}\Vert _{\mathrm{L}^\infty ([0,1])}}{{\underline{Q}}_i} \right) =: B_i,\nonumber \\ \end{aligned}$$
(78)

for all \(t \ge 0\) and for all \(i=4, \ldots , M-2\). Finally, substituting the estimate (78) with \(i=M-2\) into the differential inequality (74) we obtain

$$\begin{aligned}&\frac{\rho _{M-1 \, \varepsilon }(t)}{\rho _{M \, \varepsilon }(t)}\nonumber \\&\quad \le \max \left( \frac{\Vert n^0_{M-1}\Vert _{\mathrm{L}^\infty ([0,1])}}{\Vert n^0_{M}\Vert _{\mathrm{L}^\infty ([0,1])}}, \frac{2 \, \Vert p_{M-2}\Vert _{\mathrm{L}^\infty ([0,1])} B_{M-2} + {\overline{P}}_{M-1} + d}{{\underline{Q}}_{M-1}} \right) =: B_{M-1}\nonumber \\ \end{aligned}$$
(79)

for all \(t \ge 0\). Combining the estimates (75)-(79) yields

$$\begin{aligned} \rho _{i \, \varepsilon }(t) \le \rho _{M \, \varepsilon }(t) A_i \quad \text {with} \quad A_i := \prod _{k=i}^{M-1} B_k > 0 \quad \text {for } \; i=1,\ldots ,M-1 \end{aligned}$$

for all \(t \ge 0\), which allows us to conclude that

$$\begin{aligned} P_{i}(\rho _{M \varepsilon }(t),x) \le \left( \frac{2 \, a_i(x)}{1 + \frac{K}{A_i} \rho _{i \varepsilon }(t)} - 1 \right) p_i(x) \; \text{ for } \; i=1, \ldots , M-1 \end{aligned}$$

for all \(t \ge 0\) and all \(x \in [0,1]\). The latter inequality ensures that \(P_{i}(\rho _{M \varepsilon }(t),x)\) satisfies the following relations for all \(t \ge 0\) and each \(i=1, \ldots , M-1\)

$$\begin{aligned}&\text {if } \; \displaystyle {\rho _{i \varepsilon }(t) \le \frac{A_i}{K} \, \left( 2 \, \Vert a_{i}\Vert _{\mathrm{L}^\infty ([0,1])} -1 \right) } \; \text { then } \nonumber \\&\quad 0 \le \Vert P_{i}(\rho _{M \varepsilon }(t),\cdot )\Vert _{\mathrm{L}^\infty ([0,1])} \le \left( \frac{2 \, \Vert a_{i}\Vert _{\mathrm{L}^\infty ([0,1])}}{1 + \frac{K}{A_i} \rho _{i \varepsilon }(t)} - 1 \right) \, \Vert p_{i}\Vert _{\mathrm{L}^\infty ([0,1])} \quad \quad \end{aligned}$$
(80)

while

$$\begin{aligned}&\text {if } \; \displaystyle {\rho _{i \varepsilon }(t) > \frac{A_i}{K} \, \left( 2 \, \Vert a_{i}\Vert _{\mathrm{L}^\infty ([0,1])} -1 \right) } \; \text { then } \nonumber \\&\quad \Vert P_{i}(\rho _{M \varepsilon }(t),\cdot )\Vert _{\mathrm{L}^\infty ([0,1])} \le \left( \frac{2 \, \Vert a_{i}\Vert _{\mathrm{L}^\infty ([0,1])}}{1 + \frac{K}{A_i} \rho _{i \varepsilon }(t)} - 1 \right) \, \inf _{x \in [0,1]} p_{i} < 0. \end{aligned}$$
(81)

Integrating over [0, 1] both sides of the IDEs (7) for \(n_{1 \, \varepsilon }\) and estimating from above gives the following differential inequality

$$\begin{aligned} \varepsilon \, \frac{\mathrm{d}}{\mathrm{d}t}\rho _{1 \, \varepsilon }(t) \le \Vert P_{1}(\rho _{M \varepsilon }(t),\cdot )\Vert _{\mathrm{L}^\infty ([0,1])} \, \rho _{1 \, \varepsilon }(t) \end{aligned}$$
(82)

from which, using (80) and (81) with \(i=1\), we find that for any \(\varepsilon >0\)

$$\begin{aligned} \rho _{1 \, \varepsilon }(t) \le \max \left( \Vert n^0_{1}\Vert _{\mathrm{L}^\infty ([0,1])}, \frac{A_1}{K} \, \left( 2 \, \Vert a_{1}\Vert _{\mathrm{L}^\infty ([0,1])} -1 \right) \right) =: {\overline{\rho }}_1 \quad \text {for all } \; t \ge 0, \end{aligned}$$

that is, the upper bound (15) on \(\rho _{1 \, \varepsilon }\) is verified.

Furthermore, integrating over [0, 1] both sides of the IDEs (7) for \(n_{2 \, \varepsilon }\) and estimating from above using the fact that

$$\begin{aligned} Q_{1}(\rho _{M \, \varepsilon }(t),x) \le 2 \, \Vert p_{1}\Vert _{\mathrm{L}^\infty ([0,1])} \quad \text {for all } (t,x) \in [0,\infty ) \times [0,1] \end{aligned}$$

along with the upper bound (15) on \(\rho _{1 \, \varepsilon }\) gives

$$\begin{aligned} \varepsilon \, \frac{\mathrm{d}}{\mathrm{d}t}\rho _{2 \, \varepsilon }(t) \le 2 \, \Vert p_{1}\Vert _{\mathrm{L}^\infty ([0,1])} {\overline{\rho }}_1 + \Vert P_{2}(\rho _{M \varepsilon }(t),\cdot )\Vert _{\mathrm{L}^\infty ([0,1])} \, \rho _{2 \, \varepsilon }(t). \end{aligned}$$
(83)

The above differential inequality along with the estimates (80) and (81) with \(i=2\) ensures that there exists \(C>0\) such that for any \(\varepsilon >0\)

$$\begin{aligned} \rho _{2 \, \varepsilon }(t) \le \max \left( \Vert n^0_{2}\Vert _{\mathrm{L}^\infty ([0,1])}, \frac{A_2}{K} \, \left( 2 \, \Vert a_{2}\Vert _{\mathrm{L}^\infty ([0,1])} -1 \right) , \frac{2}{C} \, \Vert p_{1}\Vert _{\mathrm{L}^\infty ([0,1])} \, {\overline{\rho }}_1 \right) =: {\overline{\rho }}_2 \end{aligned}$$

for all \(t \ge 0\). Hence, the upper bound (15) on \(\rho _{2 \, \varepsilon }\) is verified. The upper bounds (15) on \(\rho _{i \, \varepsilon }\) for \(i=3,\ldots ,M-1\) can be proved in a similar way using a bootstrap argument.

Finally, integrating over [0, 1] both sides of the IDEs (7) for \(n_{M \, \varepsilon }\) and estimating from above using the fact that

$$\begin{aligned} Q_{M-1}(\rho _{M \, \varepsilon }(t),x) \le 2 \, \Vert p_{M-1}\Vert _{\mathrm{L}^\infty ([0,1])} \quad \text {for all } (t,x) \in [0,\infty ) \times [0,1] \end{aligned}$$

along with the upper bound (15) on \(\rho _{M-1 \, \varepsilon }\) gives the following differential inequality

$$\begin{aligned} \varepsilon \, \frac{\mathrm{d}}{\mathrm{d}t}\rho _{M \, \varepsilon }(t) \le 2 \, \Vert p_{M-1}\Vert _{\mathrm{L}^\infty ([0,1])} {\overline{\rho }}_{M-1} - d \, \rho _{M \varepsilon }(t), \end{aligned}$$

which ensures that for any \(\varepsilon >0\) we have

$$\begin{aligned} \rho _{M \, \varepsilon }(t) \le \max \left( \Vert n^0_{M}\Vert _{\mathrm{L}^\infty ([0,1])}, \frac{2}{d} \, \Vert p_{M-1}\Vert _{\mathrm{L}^\infty ([0,1])} \, {\overline{\rho }}_{M-1} \right) =: {\overline{\rho }}_M \quad \text {for all } \; t \ge 0, \end{aligned}$$

that is, the upper bound (15) on \(\rho _{M \, \varepsilon }\) is verified.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorenzi, T., Marciniak-Czochra, A. & Stiehl, T. A structured population model of clonal selection in acute leukemias with multiple maturation stages. J. Math. Biol. 79, 1587–1621 (2019). https://doi.org/10.1007/s00285-019-01404-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-019-01404-w

Keywords

Mathematics Subject Classification

Navigation