Skip to main content
Log in

Stochastic neural field model: multiple firing events and correlations

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper studies a nonlinear dynamical phenomenon called the multiple firing event (MFE) in a spatially heterogeneous stochastic neural field model, which is extended from that in our previous paper (Li et al. in J Math Biol 78:83–115, 2018). MFEs are a partially synchronized spiking barrages that are believed to be responsible for the Gamma oscillation. Rigorous results about the stochastic stability and the law of large numbers are proved, which further imply the well-definedness and computability of many quantities related to MFEs. Then we devote to study spatial and temporal properties of MFEs. Our key finding is that MFEs are spatially correlated but the spatial correlation decays quickly. Detailed mathematical justifications are made based on our qualitative models that aim to demonstrate the mechanism of MFEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Athreya Krishna B, Ney Peter E, Ney PE (2004) Branching processes. Courier Corporation

  • Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23(35):11167–11177

    Article  Google Scholar 

  • Börgers C, Epstein S, Kopell NJ (2005) Background gamma rhythmicity and attention in cortical local circuits: a computational study. Proc Natl Acad Sci USA 102(19):7002–7007

    Article  Google Scholar 

  • Börgers C, Kopell N (2003) Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Comput 15(3):509–538

    Article  MATH  Google Scholar 

  • Börgers C, Kopell N (2005) Effects of noisy drive on rhythms in networks of excitatory and inhibitory neurons. Neural Comput 17(3):557–608

    Article  MathSciNet  MATH  Google Scholar 

  • Cai D, Tao L, Shelley M, McLaughlin DW (2004) An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. Proc Natl Acad Sci USA 101(20):7757–7762

    Article  Google Scholar 

  • Cai D, Tao L, Rangan AV, McLaughlin DW et al (2006) Kinetic theory for neuronal network dynamics. Commun Math Sci 4(1):97–127

    Article  MathSciNet  MATH  Google Scholar 

  • Chariker L, Young L-S (2015) Emergent spike patterns in neuronal populations. J Comput Neurosci 38(1):203–220

    Article  MATH  Google Scholar 

  • Churchland MM, Yu Byron M, Cunningham JP, Sugrue LP, Cohen MR, Corrado GS, Newsome WT, Clark AM, Hosseini P, Scott BB et al (2010) Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nature Neurosci 13(3):369

    Article  Google Scholar 

  • Goddard C, Sridharan D, Huguenard JR, Knudsen EI (2012) Gamma oscillations are generated locally in an attention-related midbrain network. Neuron 73(3):567–580

    Article  Google Scholar 

  • Hairer M (2010) Convergence of Markov processes, Lecture notes. http://www.hairer.org/notes/Convergence.pdf

  • Hairer M, Mattingly JC (2011) Yet another look at harris’ ergodic theorem for markov chains. In: Seminar on stochastic analysis, random fields and applications VI. Springer, pp. 109–117

  • Haskell E, Nykamp DQ, Tranchina D (2001) A population density method for large-scale modeling of neuronal networks with realistic synaptic kinetics. Neurocomputing 38:627–632

    Article  MATH  Google Scholar 

  • Henrie JA, Shapley R (2005) Lfp power spectra in v1 cortex: the graded effect of stimulus contrast. J Neurophysiol 94(1):479–490

    Article  Google Scholar 

  • Hubel DH (1995) Eye, brain, and vision. Scientific American Library/Scientific American Books

  • Kaschube M, Schnabel M, Löwel S, Coppola DM, White LE, Wolf F (2010) Universality in the evolution of orientation columns in the visual cortex. Science 330(6007):1113–1116

    Article  Google Scholar 

  • Lee K-H, Williams LM, Breakspear M, Gordon E (2003) Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia. Brain Res Rev 41(1):57–78

    Article  Google Scholar 

  • Li Y, Chariker L, Young L-S (2018) How well do reduced models capture the dynamics in models of interacting neurons? J Math Biol 78:83–115

    Article  MathSciNet  MATH  Google Scholar 

  • Mazzoni A, Broccard FD, Garcia-Perez E, Bonifazi P, Ruaro ME, Torre V (2007) On the dynamics of the spontaneous activity in neuronal networks. PloS ONE 2(5):e439

    Article  Google Scholar 

  • Menon V, Freeman WJ, Cutillo BA, Desmond JE, Ward MF, Bressler SL, Laxer KD, Barbaro N, Gevins AS (1996) Spatio-temporal correlations in human gamma band electrocorticograms. Electroencephalogr Clin Neurophysiol 98(2):89–102

    Article  Google Scholar 

  • Meyn SP, Tweedie RL (2009) Markov chains and stochastic stability. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Newhall KA, Kovačič G, Kramer PR, Cai D (2010) Cascade-induced synchrony in stochastically driven neuronal networks. Phys Rev E 82(4):041903

    Article  MathSciNet  Google Scholar 

  • Petermann T, Thiagarajan TC, Lebedev MA, Nicolelis MAL, Chialvo DR, Plenz D (2009) Spontaneous cortical activity in awake monkeys composed of neuronal avalanches. Proc Natl Acad Sci 106(37):15921–15926

    Article  Google Scholar 

  • Plenz D, Stewart CV, Shew W, Yang H, Klaus A, Bellay T (2011) Multi-electrode array recordings of neuronal avalanches in organotypic cultures. J Vis Exp 54:e2949

    Google Scholar 

  • Rangan AV, Young L-S (2013) Dynamics of spiking neurons: between homogeneity and synchrony. J Comput Neurosci 34(3):433–460

    Article  MathSciNet  MATH  Google Scholar 

  • Rangan AV, Young L-S (2013) Emergent dynamics in a model of visual cortex. J Comput Neurosci 35(2):155–167

    Article  MathSciNet  Google Scholar 

  • Samonds JM, Zhou Z, Bernard MR, Bonds AB (2006) Synchronous activity in cat visual cortex encodes collinear and cocircular contours. J Neurophysiol 95(4):2602–2616

    Article  Google Scholar 

  • Shew WL, Yang H, Yu S, Roy R, Plenz D (2011) Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches. J Neurosci 31(1):55–63

    Article  Google Scholar 

  • Stout W (1974) Almost sure convergence, vol 95. Academic Press, New York

    MATH  Google Scholar 

  • Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12(1):1–24

    Article  Google Scholar 

  • Wilson HR, Cowan JD (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Biol Cybern 13(2):55–80

    MATH  Google Scholar 

  • Yu J, Ferster D (2010) Membrane potential synchrony in primary visual cortex during sensory stimulation. Neuron 68(6):1187–1201

    Article  Google Scholar 

  • Yu S, Yang H, Nakahara H, Santos GS, Nikolić D, Plenz D (2011) Higher-order interactions characterized in cortical activity. J Neurosci 31(48):17514–17526

    Article  Google Scholar 

  • Zhang J, Newhall K, Zhou D, Rangan A (2014) Distribution of correlated spiking events in a population-based approach for integrate-and-fire networks. J Comput Neurosci 36(2):279–295

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang J, Zhou D, Cai D, Rangan AV (2014) A coarse-grained framework for spiking neuronal networks: between homogeneity and synchrony. J Comput Neurosci 37(1):81–104

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yao Li and Hui Xu were partially supported by the University of Massachusetts Amherst FRG/HEG grant. Yao Li is partially supported by NSF DMS-1813246.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xu, H. Stochastic neural field model: multiple firing events and correlations. J. Math. Biol. 79, 1169–1204 (2019). https://doi.org/10.1007/s00285-019-01389-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-019-01389-6

Keywords

Mathematics Subject Classification

Navigation