Skip to main content

Advertisement

Log in

Invasion pinning in a periodically fragmented habitat

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Biological invasions can cause great damage to existing ecosystems around the world. Most landscapes in which such invasions occur are heterogeneous. To evaluate possible management options, we need to understand the interplay between local growth conditions and individual movement behaviour. In this paper, we present a geometric approach to studying pinning or blocking of a bistable travelling wave, using ideas from the theory of symmetric dynamical systems. These ideas are exploited to make quantitative predictions about how spatial heterogeneities in dispersal and/or reproduction rates contribute to halting biological invasion fronts in reaction–diffusion models with an Allee effect. Our theoretical predictions are confirmed using numerical simulations, and their ecological implications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allee W (1949) Principles of animal ecology. Saunders Co., Philadelphia

    Google Scholar 

  • Berestycki H, Bouhours J, Chapuisat G (2016) Front blocking and propagation in cylinders with varying cross section. Calc Var Partial Differ Equ 55:44

    Article  MathSciNet  MATH  Google Scholar 

  • Berestycki H, Hamel F, Nadirashvili N (2005) The speed of propagation for KPP type problems. I: periodic framework. J Eur Math Soc 7:173–213

    Article  MathSciNet  MATH  Google Scholar 

  • Courchamp F, Berec L, Gascoigne J (2008) Allee effects in ecology and conservation. Oxford University Press, New York

    Book  Google Scholar 

  • Ding W, Hamel F, Zhao X-Q (2015) Transition fronts for periodic bistable reaction-diffusion equations. Calc Var Partial Differ Equ 54:2517–2551

    Article  MathSciNet  MATH  Google Scholar 

  • Ding W, Hamel F, Zhao X-Q (2017) Bistable pulsating fronts for reaction–diffusion equations in a periodic habitat. Indiana Univ Math J 66:1189–1265

    Article  MathSciNet  MATH  Google Scholar 

  • Fife PC, McLeod JB (1977) The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch Ration Mech Anal 65:335–361

    Article  MathSciNet  MATH  Google Scholar 

  • Freidlin M, Gartner J (1979) On the propagation of concentration waves in periodic and random media. Sov Math Dokl 20:1282–1286

    MATH  Google Scholar 

  • Hadeler KP, Rothe F (1975) Travelling fronts in nonlinear diffusion equations. J Math Biol 2:251–263

    Article  MathSciNet  MATH  Google Scholar 

  • Heinze S (2001) Wave solutions to reaction–diffusion systems in perforated domains. Z Anal Anwendungen 20:661–676

    Article  MathSciNet  MATH  Google Scholar 

  • Keener J (2000) Homogenization and propagation in the bistable equation. Phys D 136:1–17

    Article  MathSciNet  MATH  Google Scholar 

  • Keener J, Lewis T (2000) Wave-block in excitable media due to regions of depressed excitability. SIAM J Appl Math 61:293–316

    Article  MathSciNet  MATH  Google Scholar 

  • Keitt T, Lewis MA, Holt R (2001) Allee effects, invasion pinning, and species’ borders. Am Nat 157:203–216

    Google Scholar 

  • LeBlanc V, Roy C (2013) Forced translational symmetry-breaking for abstract evolution equations. J Abstr Differ Equ Appl 4:16–43

    MathSciNet  MATH  Google Scholar 

  • Maciel G, Lutscher F (2013) How individual movement response to habitat edges affects population persistence and spatial spread. Am Nat 182:42–52

    Article  Google Scholar 

  • Maciel G, Lutscher F (2015) Allee effects and population spread in patchy landscapes. J Biol Dyn 9:109–123

    Article  MathSciNet  Google Scholar 

  • Musgrave J, Lutscher F (2014) Integrodifference equations in patchy landscapes II: population level consequences. J Math Biol 69:617–658

    Article  MathSciNet  MATH  Google Scholar 

  • Musgrave J, Lutscher F, Girard A (2015) Population spread in patchy landscapes under a strong Allee effect. Theor Ecol 8:313–326

    Article  Google Scholar 

  • Nadin G (2015) Critical travelling waves for general heterogeneous one-dimensional reaction–diffusion equations. Ann Inst H Poincaré Anal Non Linéaire 32:841–873

    Article  MathSciNet  MATH  Google Scholar 

  • Roy C (2012) The origin of wave blocking for a bistable reaction–diffusion equation : a general approach. Master’s thesis, University of Ottawa

  • Sandstede B, Scheel A, Wulff C (1997) Dynamics of spiral waves on unbounded domains using center-manifold reductions. J Differ Equ 141:122–149

    Article  MathSciNet  MATH  Google Scholar 

  • Shigesada N, Kawasaki K (1997) Biological invasions : theory and practice. Oxford University Press, New York

    Google Scholar 

  • Shigesada N, Kawasaki K, Teramoto E (1986) Traveling periodic waves in heterogeneous environments. Theor Popul Biol 30:143–160

    Article  MathSciNet  MATH  Google Scholar 

  • Turchin P (1998) Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants. Sinauer Associates

  • Volpert AI, Volpert VA, Volpert VA (1994) Travelling wave solutions of parabolic systems, volume 140 of Translation of mathematical monographs. American Mathematical Society, Providence, RI

  • Weinberger HF (1982) Long time behaviour of a class of biological models. SIAM J Math Anal 13:353–396

    Article  MathSciNet  MATH  Google Scholar 

  • Weinberger HF (2002) On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J Math Biol 45:511–548

    Article  MathSciNet  MATH  Google Scholar 

  • With K (2000) The landscape ecology of invasive spread. Conserv Biol 16:1192–1203

    Article  Google Scholar 

  • Xin JX (1993) Existence and nonexistence of traveling waves and reaction–diffusion front propagation in periodic media. J Stat Phys 73:893–926

    Article  MathSciNet  MATH  Google Scholar 

  • Xin J (2002) Front propagation in heterogeneous media. SIAM Rev 42:161–230

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor LeBlanc.

Appendix: Proof of Theorem 2.5

Appendix: Proof of Theorem 2.5

We rewrite (17) as

(29)

The existence of the two-dimensional center manifold \(\mathcal {S}_{\varepsilon }\) follows from Sandstede et al. (1997) and LeBlanc and Roy (2013). To get the dynamics of (29) restricted to \(\mathcal {S}_{\varepsilon }\), we follow (Sandstede et al. 1997) and use the following parametrization of a local neighborhood of the relative equilibrium at \(\varepsilon =0\):

$$\begin{aligned} \begin{pmatrix} u \\ c \end{pmatrix} = \mathcal {T}_{a} \left[ \begin{pmatrix} u^* \\ 0 \end{pmatrix} + c \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \varepsilon \begin{pmatrix} w \\ 0 \end{pmatrix} \right] , \end{aligned}$$
(30)

where w is a bounded uniformly continuous function with bounded and uniformly continuous derivative.

Following closely LeBlanc and Roy (2013), we substitute parameterization (30) into system (29), and obtain

$$\begin{aligned} {\dot{a}}(t) \mathcal {T}_{a(t)} \left( \begin{pmatrix} \xi u^* \\ 0 \end{pmatrix} + O(\varepsilon ) \right)&= \mathcal {T}_{a(t)} \left( \begin{pmatrix} \mathcal {A} u^* \\ 0 \end{pmatrix} + \begin{pmatrix} \varepsilon \mathcal {A} w \\ 0 \end{pmatrix} \right) \\&\quad + \mathcal {T}_{a(t)} \begin{pmatrix} \mathcal {F}(u^*+\varepsilon w,c) \\ 0 \end{pmatrix} \\&\quad + \varepsilon \begin{pmatrix} \mathcal {G}(\mathcal {T}_{a} (\xi u^* + \varepsilon \xi w), \mathcal {T}_{a} (u^* + \varepsilon w), x, \varepsilon ) \\ 0 \end{pmatrix} . \end{aligned}$$

Applying \(\mathcal {T}_{-a(t)}\) to both sides of the equation above gives

$$\begin{aligned} {\dot{a}}(t) \left( \begin{pmatrix} \xi u^* \\ 0 \end{pmatrix} + O(\varepsilon ) \right)&= \left( \begin{pmatrix} \mathcal {A} u^* \\ 0 \end{pmatrix} + \begin{pmatrix} \varepsilon \mathcal {A} w \\ 0 \end{pmatrix} \right) + \begin{pmatrix} \mathcal {F}(u^*+\varepsilon w,c) \\ 0 \end{pmatrix} \\&\quad + \varepsilon \begin{pmatrix} \mathcal {T}_{-a(t)} \mathcal {G}(\mathcal {T}_{a} (\xi u^* + \varepsilon \xi w), \mathcal {T}_{a} (u^* + \varepsilon w), x, \varepsilon ) \\ 0 \end{pmatrix}. \end{aligned}$$

Since \(u^*\) is the wave profile for the unperturbed system know that

$$\begin{aligned} \begin{pmatrix} \mathcal {A} u^* \\ 0 \end{pmatrix} = - \begin{pmatrix} \mathcal {F}(u^*,0) \\ 0 \end{pmatrix}. \end{aligned}$$

From the definition of the linear operator in (13), we have

$$\begin{aligned} L \begin{pmatrix} 0 \\ c \end{pmatrix} = \begin{pmatrix} \mathcal {F}_c(u^*,0)c \\ 0 \end{pmatrix},&L \begin{pmatrix} \varepsilon w \\ 0 \end{pmatrix} = \begin{pmatrix} \varepsilon \mathcal {A} w + \varepsilon \mathcal {F}_u (u^*,0) w \\ 0 \end{pmatrix}, \end{aligned}$$

and so we write the previous expression as

$$\begin{aligned} {\dot{a}}(t) \left( \begin{pmatrix} \xi u^* \\ 0 \end{pmatrix} + O(\varepsilon ) \right)&= L \begin{pmatrix} 0 \\ c \end{pmatrix} + \varepsilon L \begin{pmatrix} w \\ 0 \end{pmatrix} + \begin{pmatrix} \mathcal {F}(u^*+\varepsilon w,c) \\ 0 \end{pmatrix} \\&\quad - \begin{pmatrix} \mathcal {F}(u^*,0) \\ 0 \end{pmatrix} - \begin{pmatrix} \mathcal {F}_c(u^*,0)c \\ 0 \end{pmatrix} - \varepsilon \begin{pmatrix} \mathcal {F}_u(u^*,0)w \\ 0 \end{pmatrix} \\&\quad + \varepsilon \begin{pmatrix} \mathcal {T}_{-a(t)} \mathcal {G}(\mathcal {T}_{a(t)} (\xi u^* + \varepsilon \xi w), \mathcal {T}_{a(t)} (u^* + \varepsilon w), x, \varepsilon ) \\ 0 \end{pmatrix} . \end{aligned}$$

Hypothesis 2.2, along with the fact that w is a uniformly continuous function and bounded with respect to \(\xi \), tells us that as \((\varepsilon ,c) \rightarrow (0,0)\) the difference

$$\begin{aligned} \mathcal {T}_{-a} \mathcal {G}( \mathcal {T}_{a} (\xi u^* + \varepsilon \xi w), \mathcal {T}_{a} (u^* + \varepsilon w), x, \varepsilon ) - \mathcal {T}_{-a} \mathcal {G}( \mathcal {T}_{a} (\xi u^*), \mathcal {T}_{a}u^*, x, 0) \end{aligned}$$
(31)

tends to zero. Thus we introduce the function

$$\begin{aligned} q(a,c,\varepsilon )&= \frac{1}{\varepsilon } (\mathcal {F}(u^* + \varepsilon w,c) - \mathcal {F}(u^*,c)) - \mathcal {F}_u(u^*,c)w \\&\quad + \mathcal {F}_u(u^*,c)w - \mathcal {F}_u(u^*,0)w \\&\quad + \mathcal {T}_{-a} \mathcal {G}( \mathcal {T}_{a} (\xi u^* + \varepsilon \xi w), \mathcal {T}_{a} (u^* + \varepsilon w), x, \varepsilon ) \\&\quad - \mathcal {T}_{-a} \mathcal {G}( \mathcal {T}_{a} (\xi u^*), \mathcal {T}_{a}u^*, x, 0) \end{aligned}$$

where \(q(a,c,\varepsilon ) \rightarrow 0 \) as \((\varepsilon ,c) \rightarrow (0,0)\). Adding and subtracting \((\varepsilon q, 0 )^T\) from the equation gives us

$$\begin{aligned} {\dot{a}}(t) \left( \begin{pmatrix} \xi u^* \\ 0 \end{pmatrix} + O(\varepsilon ) \right)&= L \begin{pmatrix} 0 \\ c \end{pmatrix} + \varepsilon L \begin{pmatrix} w \\ 0 \end{pmatrix} + \varepsilon \begin{pmatrix} q \\ 0 \end{pmatrix} \\&\quad + \varepsilon \begin{pmatrix} \mathcal {T}_{-a} \mathcal {G}( \mathcal {T}_{a} (\xi u^*), \mathcal {T}_{a}u^*, x, 0) \\ 0 \end{pmatrix} . \end{aligned}$$

Applying the projection P to the above equation and using the fact that \(L(0,c)^T = c(\xi u^*,0)^T\) and \(P(\xi u^*,0) = (\xi u^*,0) = \psi _1\) gives us

$$\begin{aligned} {\dot{a}} ( \psi _1 + O(\varepsilon )) = c \psi _1 + \varepsilon P \begin{pmatrix} \mathcal {T}_{-a} \mathcal {G}( \xi \mathcal {T}_{a} u^*, \mathcal {T}_{a}u^*, x, 0) \\ 0 \end{pmatrix} + \varepsilon P \begin{pmatrix} q \\ 0 \end{pmatrix}. \end{aligned}$$

Projecting onto \(\psi _1\) gives

$$\begin{aligned} {\dot{a}} ( \langle \psi _1, \psi _1 \rangle (1 + O(\varepsilon ) ))&= c \langle \psi _1, \psi _1 \rangle + \varepsilon \left\langle \begin{pmatrix} \mathcal {T}_{-a(t)} \mathcal {G}( \xi \mathcal {T}_{a} u^*, \mathcal {T}_{a}u^*, x, 0) \\ 0 \end{pmatrix}, \psi _1 \right\rangle \\&\quad + \varepsilon \left\langle \begin{pmatrix} q \\ 0 \end{pmatrix}, \psi _1 \right\rangle . \end{aligned}$$

Since \(\varepsilon \) and c are assumed to be small we can neglect the higher order terms that appear as a result of dividing by \(1+O(\varepsilon )\). Letting

$$\begin{aligned} r(a)= & {} - \frac{\left\langle \begin{pmatrix} \mathcal {T}_{-a} \mathcal {G}( \xi \mathcal {T}_{a} u^*, \mathcal {T}_{a}u^*, x, 0) \\ 0 \end{pmatrix}, \psi _1 \right\rangle }{ \langle \psi _1, \psi _1 \rangle } , \nonumber \\ {\hat{q}}= & {} \frac{\left\langle \begin{pmatrix} q \\ 0 \end{pmatrix}, \psi _1 \right\rangle }{ \langle \psi _1, \psi _1 \rangle }, \end{aligned}$$
(32)

we get the system of differential equations

$$\begin{aligned} a_t&= c - \varepsilon r(a) + \varepsilon {\hat{q}} (a,c,\varepsilon ), \\ c_t&= 0, \end{aligned}$$

where \({\hat{q}} (a,c,\varepsilon ) \rightarrow 0\) uniformly as \((\varepsilon ,c) \rightarrow (0,0)\).

Now, an application of the implicit function theorem tells us that for \((\varepsilon , c)\) close enough to (0, 0) there exists a curve of equilibria such that \(a_t = 0\). This curve is the graph of the function \(c = \varepsilon r(a) + \varepsilon \sigma (a,\varepsilon )\) where \(\sigma \) is some bounded function with the property \(\sigma (a,0) = 0\) (LeBlanc and Roy 2013; Roy 2013). Thus, it follows that if

$$\begin{aligned} \inf _{a \in \mathbb {R}} \{ r(a) + \sigma (a, \varepsilon ) \}< \frac{c}{\varepsilon } < \sup _{a \in \mathbb {R}} \{ r(a) + \sigma (a, \varepsilon ) \} \end{aligned}$$
(33)

then at some point between \(a \in \mathbb {R}\) we expect \(a_t = 0\). This means that at some point in time the travelling front will reach an equilibrium point at which the wave is stationary. In other words, propagation of the wave is blocked. We remark that for \((\varepsilon , c)\) close enough to (0, 0) the term \(\sigma (a, \varepsilon )\) becomes negligible. Hence, close to (0, 0), the parameter region where we expect propagation failure is approximated by \(\inf _{a \in \mathbb {R}} \{r(a)\}\) and \(\sup _{a \in \mathbb {R}} \{r(a)\}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dowdall, J., LeBlanc, V. & Lutscher, F. Invasion pinning in a periodically fragmented habitat. J. Math. Biol. 77, 55–78 (2018). https://doi.org/10.1007/s00285-017-1188-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-017-1188-4

Mathematics Subject Classification

Navigation