Skip to main content
Log in

From homogeneous eigenvalue problems to two-sex population dynamics

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Enclosure theorems are derived for homogeneous bounded order-preserving operators and illustrated for operators involving pair-formation functions introduced by Karl-Peter Hadeler in the late 1980s. They are applied to a basic discrete-time two-sex population model and to the relation between the basic turnover number and the basic reproduction number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akian M, Gaubert S, Nussbaum RD (2011) A Collatz-Wielandt characterization of the spectral radius of order-preserving homogeneous maps on cones. arXiv:1112.5968 [math.FA]

  • Bonsall FF (1958) Linear operators in complete positive cones. Proc Lond Math Soc 8:53–75

    Article  MathSciNet  MATH  Google Scholar 

  • Busenberg SN, Hadeler KP (1990) Demography and epidemics. Math Biosci 101:63–74

    Article  MathSciNet  MATH  Google Scholar 

  • Caswell H (1989) Matrix population models. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Caswell H (1989) Matrix population models: construction, analysis, and interpretation. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Collatz L (1942) Einschließungssatz für die Eigenwerte von Integralgleichungen. Math Z 47:395–398

    Article  MATH  Google Scholar 

  • Collatz L (1942) Einschließungssatz für die charakteristischen Zahlen von Matrizen. Math Z 48:221–226

    Article  MathSciNet  MATH  Google Scholar 

  • Cushing JM, Diekmann O (2016) The many guises of \(R_0\). J Theor Biol 404:295–302

    Article  MathSciNet  MATH  Google Scholar 

  • Cushing JM, Zhou Y (1994) The net reproductive value and stability in matrix population models. Nat Res Mod 8:297–333

    Article  Google Scholar 

  • Dietz K, Hadeler KP (1988) Epidemiological models for sexually transmitted diseases. J Math Biol 26:1–25

    Article  MathSciNet  MATH  Google Scholar 

  • Elsner L, Hadeler KP (1970) Eigenwerteinschließung mit Lorentzkegeln. Z Angew Math Mech 50:427–429

    Article  MathSciNet  MATH  Google Scholar 

  • Elsner L, Hadeler KP (2015) Maximizing the spectral radius of a matrix product. Linear Algebra Appl 469:153–168

    Article  MathSciNet  MATH  Google Scholar 

  • Förster K-H, Nagy B (1980) On the Collatz-Wielandt numbers and the local spectral radius of a nonnegative operator. Linear Algebra Appl 120:193–205

    Article  MathSciNet  MATH  Google Scholar 

  • Fredrickson AG (1971) A mathematical theory of age structure in sexual populations: random mating and monogamous marriage models. Math Biosci 10:117–143

    Article  MATH  Google Scholar 

  • Gel’fand IM (1941) Normierte Ringe. Mat Sbornik NS 9:3–24

    MathSciNet  MATH  Google Scholar 

  • Hadeler KP (1975) Nonlinear eigenvalue problems. In: Ansorge R, Collatz L, Hämmerlin G, Törnig W (eds) Numerische Behandlung von Differentialgleichungen. Tagung im Mathematischen Forschungsinstitut, Oberwolfach, 9.– 14. 6.1974, ISNM. Internationale Schriftenreihe zur Numerischen Mathematik 27. Springer, Berlin, 111–130

  • Hadeler KP (1989) Modeling AIDS in structured populations. In: Proceedings of the 47th session of the international statistical institute. Book 1. Paris, 29.8.1989–6. 9.1989. Bulletin of the International Statistical Institute 53, International Statistical Institute, The Hague, 83–99

  • Hadeler KP (1992) Structured population models for HIV infection: pair formation and non-constant infectivity. In: Jewell NP, Dietz K, Farewell VT (eds) AIDS epidemiology: methodological issues. Statistical Methodology for Study of the AIDS Epidemic, Mathematical Sciences Research Institute, Berkeley, California, 30.9.1991–4.10.1991, Birkhäuser, Basel, 146–154

  • Hadeler KP (1965) Eigenwerte von Operatorpolynomen. Arch Ration Mech Anal 20:72–80

    Article  MathSciNet  MATH  Google Scholar 

  • Hadeler KP (1966) Einschließungssätze bei normalen und bei positiven Operatoren. Arch Ration Mech Anal 21:58–88

    Article  MATH  Google Scholar 

  • Hadeler KP (1967) Mehrparametrige und nichtlineare Eigenwertaufgaben. Arch Ration Mech Anal 27:306–328

    Article  MathSciNet  MATH  Google Scholar 

  • Hadeler KP (1967) Über Operatorgleichungen mit nicht linear auftretendem Parameter. Z Angew Math Mech 47:91–96

    Article  MathSciNet  MATH  Google Scholar 

  • Hadeler KP (1968) Variationsprinzipien bei nichtlinearen Eigenwertaufgaben. Arch Ration Mech Anal 30:297–307

    Article  MathSciNet  MATH  Google Scholar 

  • Hadeler KP (1968) Ein inverses Eigenwertproblem. Linear Algebra Appl 1:83–101

    Article  MathSciNet  MATH  Google Scholar 

  • Hadeler KP (1968) Newton-Verfahren für inverse Eigenwertaufgaben. Numer Math 12:35–39

    Article  MathSciNet  MATH  Google Scholar 

  • Hadeler KP (1969) Ein Templescher Satz für nichtlineare Eigenwertaufgaben. Computing 4:160–167

    Article  MathSciNet  MATH  Google Scholar 

  • Hadeler KP (1969) Multiplikative inverse Eigenwertprobleme. Linear Algebra Appl 2:65–86

    Article  MathSciNet  MATH  Google Scholar 

  • Hadeler KP (1969) Anwendung von Fixpunktsätzen auf nichtlineare Eigenwertaufgaben. Math Z 112:181–189

    Article  MathSciNet  MATH  Google Scholar 

  • Hadeler KP (1969) Einige Anwendungen mehrparametriger Eigenwertaufgaben. Numer Math 13:285–292

    Article  MathSciNet  MATH  Google Scholar 

  • Hadeler KP (1970) Abschätzungen für den zweiten Eigenwert eines positiven Operators. Aequ Math 7:199–210

    Article  MATH  Google Scholar 

  • Hadeler KP (1971) Existenz- und Eindeutigkeitssätze für inverse Eigenwertaufgaben mit Hilfe des topologischen Abbildungsgrades. Arch Ration Mech Anal 42:317–322

    Article  MATH  Google Scholar 

  • Hadeler KP (1972) Bemerkung zu einer Arbeit von W. Wetterling über positive Operatoren. Numer Math 19:260–265

    Article  MathSciNet  MATH  Google Scholar 

  • Hadeler KP (1974) On a class of nonlinear eigenvalue problems. Acta Univ Carol Math Phys 15:35–38

    MathSciNet  MATH  Google Scholar 

  • Hadeler KP, Waldstätter R, Wörz-Busekros A (1988) Models for pair formation in bisexual populations. J Math Biol 26:635–649

    Article  MathSciNet  MATH  Google Scholar 

  • Hadeler KP (1989) Pair formation in age-structured populations. Acta Appl Math 14:91–102

    Article  MathSciNet  MATH  Google Scholar 

  • Hadeler KP (1991) Homogeneous models in mathematical biology. Mitt Math Ges Hamburg 12:549–557

    MathSciNet  MATH  Google Scholar 

  • Hadeler KP (1992) Periodic solutions of homogeneous equations. J Differ Equ 95:183–202

    Article  MathSciNet  MATH  Google Scholar 

  • Hadeler KP (1993) Pair formation models with maturation period. J Math Biol 32:1–15

    Article  MathSciNet  MATH  Google Scholar 

  • Hadeler KP (2008) Homogeneous systems with a quiescent phase. Math Model Nat Phenom 3:115–125

    Article  MathSciNet  MATH  Google Scholar 

  • Hadeler KP (2012) Pair formation. J Math Biol 64:613–645

    Article  MathSciNet  MATH  Google Scholar 

  • Hadeler KP, Dietz K, Safan M (2016) Case fatality models for epidemics in growing populations. Math Biosci 281:120–127

    Article  MathSciNet  MATH  Google Scholar 

  • Hadeler KP, Ngoma K (1990) Homogeneous models for sexually transmitted diseases. Rocky Mt J Math 20:967–986

    Article  MathSciNet  MATH  Google Scholar 

  • Hadeler KP, Thieme HR (2008) Monotone dependence of the spectral bound on the transition rates in linear compartment models. J Math Biol 57:697–712

    Article  MathSciNet  MATH  Google Scholar 

  • Hillen T, Lutscher F, Müller J (2006) Preface [special volume for Karl-Peter Hadeler on the occasion of his 70th birthday]. J Math Biol 53:491–495

    Article  MathSciNet  Google Scholar 

  • Iannelli M, Martcheva M, Milner FA (2005) Gender-structured population models: mathematical methods, numerics, and simulations. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Jin W, Smith HL, Thieme HR (2016) Persistence and critical domain size for diffusing populations with two sexes and short reproductive season. J Dyn Differ Equ 28:689–705

    Article  MathSciNet  MATH  Google Scholar 

  • Jin W, Smith HL, Thieme HR (2016) Persistence versus extinction for a class of discrete-time structured population models. J Math Biol 72:821–850

    Article  MathSciNet  MATH  Google Scholar 

  • Jin W, Thieme HR (2014) Persistence and extinction of diffusing populations with two sexes and short reproductive season. Discrete Contin Dyn Syst B 19:3209–3218

    Article  MathSciNet  MATH  Google Scholar 

  • Jin W, Thieme HR (2016) An extinction/persistence threshold for sexually reproducing populations: the cone spectral radius. Discrete Contin Dyn Syst B 21:447–470

    Article  MathSciNet  MATH  Google Scholar 

  • Krasnosel’skij MA, Lifshits JeA, Sobolev AV (1989) Positive linear systems: the method of positive operators. Heldermann, Berlin

    Google Scholar 

  • Lemmens B, Lins B, Nussbaum RD, Wortel M (2014) Denjoy-Wolff theorems for Hilbert’s and Thompson’s metric spaces. J Analyse Math. arXiv:1410.1056 [math.DS]

  • Lemmens B, Nussbaum RD (2012) Nonlinear Perron–Frobenius theory. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Lemmens B, Nussbaum RD (2013) Continuity of the cone spectral radius. Proc Am Math Soc 141:2741–2754

    Article  MathSciNet  MATH  Google Scholar 

  • Levin S (2006) On Karl Hadeler becoming 70. J Math Biol 53:496–498

    Article  MathSciNet  MATH  Google Scholar 

  • Lewis MA, Li B (2012) Spreading speed, traveling waves, and minimal domain size in impulsive reaction-diffusion models. Bull Math Biol 74:2383–2402

    Article  MathSciNet  MATH  Google Scholar 

  • Li CK, Schneider H (2002) Applications of Perron–Frobenius theory to population dynamics. J Math Biol 44:450–462

    Article  MathSciNet  MATH  Google Scholar 

  • Mallet-Paret J, Nussbaum RD (2002) Eigenvalues for a class of homogeneous cone maps arising from max-plus operators. Discrete Contin Dyn Syst (DCDS-A) 8:519–562

    Article  MathSciNet  MATH  Google Scholar 

  • Mallet-Paret J, Nussbaum RD (2010) Generalizing the Krein–Rutman theorem, measures of noncompactness and the fixed point index. J Fixed Point Theory Appl 7:103–143

    Article  MathSciNet  MATH  Google Scholar 

  • Miller TEX, Shaw AK, Inouye BD, Neubert MG (2011) Sex-biased dispersal and the speed of two-sex invasions. Am Nat 177:549–561

    Article  Google Scholar 

  • Nussbaum RD (1981) Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem. In: Fadell E, Fournier G (eds) Fixed point theory. Springer, Berlin, New York, pp 309–331

    Chapter  Google Scholar 

  • Safan M, Kretzschmar M, Hadeler KP (2013) Vaccination based control of infections in SIRS models with reinfection: special reference to pertussis. J Math Biol 67:1083–1110

    Article  MathSciNet  MATH  Google Scholar 

  • Smith HL, Thieme HR (2011) Dynamical systems and population persistence. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Stearns SC (ed) (1987) The evolution of sex and its consequences. Springer Basel AG, Basel

    Google Scholar 

  • Thieme HR (2009) Spectral bound and reproduction number for infinite dimensional population structure and time-heterogeneity. SIAM J Appl Math 70:188–211

    Article  MathSciNet  MATH  Google Scholar 

  • Thieme HR (2016) Spectral radii and Collatz-Wielandt numbers for homogeneous order-preserving maps and the monotone companion norm. In: de Jeu M, de Pagter B, van Gaans O, Veraar M (eds) Ordered structures and applications, positivity VII (Zaanen Centennial Conference). Birkhäuser, Springer International Publishing, Basel, pp 415–467

    Chapter  Google Scholar 

  • Thieme HR (2016) Eigenfunctionals of homogeneous order-preserving maps with applications to sexually reproducing populations. J Dyn Differ Equ 28:1115–1144

    Article  MathSciNet  MATH  Google Scholar 

  • Thieme HR (2017) Eigenvectors of homogeneous order-bounded order-preserving maps. Discrete Contin Dyn Syst B 22:1073–1097

    Article  MathSciNet  MATH  Google Scholar 

  • Wielandt H (1950) Unzerlegbare, nicht negative Matrizen. Math Z 52:642–648

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I thank Jürgen Voigt for providing the breakthrough in the proof of Proposition 3.9. I thank Klaus Dietz and Birgitt Schönfisch for letting me use their collection of KP Hadeler’s publications and Mark Lewis and an anonymous referee for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst R. Thieme.

Additional information

Dedicated to Karl-Peter Hadeler on the occasion of his 80th birthday (*Oct. 16, 1936) and in his remembrance ( $$\dag $$ † Feb. 3, 2017).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thieme, H.R. From homogeneous eigenvalue problems to two-sex population dynamics. J. Math. Biol. 75, 783–804 (2017). https://doi.org/10.1007/s00285-017-1114-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-017-1114-9

Keywords

Mathematics Subject Classification

Navigation