Skip to main content
Log in

Dynamics of two-strain influenza model with cross-immunity and no quarantine class

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The question about whether a periodic solution can exists for a given epidemiological model is a complicated one and has a long history (Hethcote and Levin, Applied math. ecology, biomathematics, vol 18. Springer, Berlin, pp 193–211, 1989). For influenza models, it is well known that a periodic solution can exists for a single-strain model with periodic contact rate (Aron and Schwartz, J Math Biol 110:665–679, 1984; Kuznetsov and Piccardi, J Math Biol 32:109–121, 1994), or a multiple-strain model with cross-immunity and quarantine class or age-structure (Nuño et al., Mathematical epidemiology. Lecture notes in mathematics, vol 1945. Springer, Berlin, 2008, chapter 13). In this paper, we prove the local asymptotic stability of the interior steady-state of a two-strain influenza model with sufficiently close cross-immunity and no quarantine class or age-structure. We also show that if the cross-immunity between two strains are far apart; then it is possible for the interior steady-state to lose its stability and bifurcation of periodic solutions can occur. Our results extend those obtained by Nuño et.al. (SIAM J Appl Math 65:964–982, 2005). This problem is important because understanding the reasons behind periodic outbreaks of seasonal flu is an important issue in public health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alfaro-Murillo JA, Towers S, Feng Z (2013) A deterministic model for influenza infection with multiple strains and antigenic drift. J Biol Dyn 7:199–211

    Article  Google Scholar 

  • Andreasen V, Lin J, Levin SA (1997) The dynamics of cocirculating influenza strains conferring partial cross-immunity. J Math Biol 35:825–842

    Article  MathSciNet  MATH  Google Scholar 

  • Aron JL, Schwartz IB (1984) Seasonality and period-doubling bifurcations in an epidemic model. J Math Biol 110:665–679

    MathSciNet  Google Scholar 

  • Castillo-Chavez C, Hethecote HW, Andreasen V, Levin SA, Liu WM (1989) Epidemiological models with age structure, proportionate mixing, and cross-immunity. J Math Biol 27:233–258

    Article  MathSciNet  MATH  Google Scholar 

  • Center for Disease Control and Prevention (2014) Types of influenza Viruses. http://www.cdc.gov/flu/about/viruses/types.htm. Accessed 21 Feb 2016

  • Chung KW, Liu Z (2011) Nonlinear analysis of chatter vibration in a cylindrical transverse grinding process with two time delays using a nonlinear time transformation process. Nonlinear Dyn 66:441–456

    Article  MathSciNet  MATH  Google Scholar 

  • Coburn BJ, Wagner GB, Blower S (2009) Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1). BMC Med 7:30

    Article  Google Scholar 

  • Edelstein-Keshet L (2005) Mathematical models in biology. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Gog JR, Grenfell BT (2002) Dynamics and selection of many-strain pathogens. PNAS 99:17209–17214

    Article  Google Scholar 

  • Gog JR, Swinton J (2002) A status-based approach to multiple-strain dynamics. J Math Biol 44:169–184

    Article  MathSciNet  MATH  Google Scholar 

  • Hethcote HW, Levin SA (1989) Periodicity in epidemiological models. In: Applied math. ecology, biomathematics, vol 18. Springer, Berlin, pp 193–211

  • Kuznetsov YA, Piccardi C (1994) Bifurcation analysis of periodic SEIR and SIR epidemic models. J Math Biol 32:109–121

    Article  MathSciNet  MATH  Google Scholar 

  • Lin J, Andreasen V, Levin SA (1999) Dynamics of influenza A drift: the linear three-strain model. Math Biosci 162:33–51

    Article  MathSciNet  MATH  Google Scholar 

  • Nuño M, Feng Z, Martcheva M, Castillo-Chavez C (2005) Dynamics of two-strain influenza with isolation and partial cross-immunity. SIAM J Appl Math 65:964–982

    Article  MathSciNet  MATH  Google Scholar 

  • Nuño M, Castillo-Chavez C, Feng Z, Martcheva M (2008) Mathematical models of influenza: the role of cross-immunity, quarantine and age-structure. In: Mathematical epidemiology. Lecture notes in mathematics, vol 1945. Springer, Berlin

  • Schwartz IB, Smith HL (1983) Infinite subharmonic bifurcation in an SEIR epidemic model. J Math Biol 18:233–253

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Lui.

Appendices

Appendix 1: Proof of (5.4)

We show how to simplify E and G. Let \(G_i := \sigma _{ij}\sigma _{ji}(\sigma _{ji}x_{i1}+1) + \mathcal {R}_i^0S\sigma _{ij}(1-\sigma _{ji})\,[x_{i1}(1+\sigma _{ji})+x_{j1}(1+\sigma _{ij})+2].\) Then \(G = x_{11}x_{21}\gamma _1^2\gamma _2^2(G_1+G_2)\). Using (3.7), (3.8), and \(S(1+x_{11}+x_{21}) = 1\), we have, after some algebra,

$$\begin{aligned} G_i= & {} \sigma _{ij}\sigma _{ji}\mathcal {R}_i^0S\,[\sigma _{ji}(x_{11}+x_{21})+1]+ \mathcal {R}_i^0\sigma _{ij}(1-\sigma _{ji})\,[S(\sigma _{ji}x_{i1}+\sigma _{ij}x_{j1}+1)+1]\\= & {} \mathcal {R}_i^0S\sigma _{ij}\,(\sigma _{ji}x_{i1}+\sigma _{ij}x_{j1}+1) + \mathcal {R}_i^0 S \sigma _{ij}\sigma _{ji}x_{j1}(\sigma _{ji}-\sigma _{ij}) + \mathcal {R}_i^0\sigma _{ij}(1-\sigma _{ji})\\= & {} \sigma _{ij}(\sigma _{ji}x_{i1}+1) + \mathcal {R}_i^0S\sigma _{ij}x_{j1}(1-\sigma _{ji})(\sigma _{ij}-\sigma _{ji})+\mathcal {R}_i^0\sigma _{ij}(1-\sigma _{ji})\\= & {} \mathcal {R}_i^0 \sigma _{ij}\{1+S(1-\sigma _{ji})\,[(\sigma _{ij}-\sigma _{ji})x_{j1}+1]\}. \end{aligned}$$

Similarly, \(E = -\gamma _1\gamma _2(x_{11}\gamma _1E_1+x_{21}\gamma _2E_2)\), where

$$\begin{aligned} E_i= & {} \sigma _{ji}(\sigma _{ji}x_{i1}+1) + \mathcal {R}_i^0S(1-\sigma _{ji})(\sigma _{ji}x_{i1}+x_{11}+x_{21}+1)\\&+\, (\mathcal {R}_1^0S)(\mathcal {R}_2^0S)\sigma _{ji}x_{ji}(1-\sigma _{ij})\\= & {} \sigma _{ji}\mathcal {R}_i^0S[\sigma _{ji}(x_{11}+x_{21})+1] + \mathcal {R}_i^0(1-\sigma _{ji})(S\sigma _{ji}x_{i1}+1)\nonumber \\&+\, (\mathcal {R}_1^0S)(\mathcal {R}_2^0)\sigma _{ji}x_{ji}(1-\sigma _{ij})\\= & {} \mathcal {R}_i^0 S\sigma _{ji}(\sigma _{ji}x_{j1}+x_{i1}+1) + \mathcal {R}_i^0(1-\sigma _{ji})+(\mathcal {R}_1^0S)(\mathcal {R}_2^0S)\sigma _{ji}x_{ji}(1-\sigma _{ij})\\= & {} \mathcal {R}_i^0\sigma _{ji}[1-S(1-\sigma _{ji})x_{j1}] + \mathcal {R}_i^0(1-\sigma _{ji})+(\mathcal {R}_1^0S)(\mathcal {R}_2^0S)\sigma _{ji}x_{ji}(1-\sigma _{ij})\\= & {} \mathcal {R}_i^0\{1-S\sigma _{ji}x_{ji}[1-\sigma _{ji}-\mathcal {R}_j^0S(1-\sigma _{ij})]\}. \end{aligned}$$

One can then prove (1) by using mathematical software to show that \(\mathcal {H}\), defined by (5.2) with E and G given above, is same as the right side of (5.4) with \(q_{ij}\) defined by (5.3).

Appendix 2: Proof of (5.5)

Let \(e_i = \mathcal {R}_i^0J_j\). Then \(Q = q_{11}q_{22} - q_{12}^2/4 >0\) is equivalent to

$$\begin{aligned} T := 2h_1e_2L + 2 h_2e_1L - L^2 - 4Ke_1 e_2 - (h_1e_2 - h_2 e_1)^2 > 0. \end{aligned}$$

Recall from Lemma 5.4 \(D_i = \mathcal {R}_i^0(x_{j1}^0\sigma )(1-\mathcal {R}_j^0S^0)\). Then \(e_i = \mathcal {R}_i^0 - D_iS^0(1-\sigma )\). Using mathematical software, one can show that

$$\begin{aligned} T = T_1 + T_{21}D_1 + T_{22}D_2 - T_{23}, \end{aligned}$$

where

$$\begin{aligned} T_1= & {} (\mathcal {R}_1^0+\mathcal {R}_2^0)\sigma (S^0)^2(1-\sigma )^2\,[4\mathcal {R}_1^0\mathcal {R}_2^0 - (\mathcal {R}_1^0+\mathcal {R}_2^0)\sigma ]\nonumber \\ T_{2i}= & {} [4\mathcal {R}_1^0\mathcal {R}_2^0\sigma - 2(\mathcal {R}_1^0+\mathcal {R}_2^0)\sigma (\mathcal {R}_j^0S^0(1-\sigma )+\sigma )](S^0)^2(1-\sigma )^2\nonumber \\ T_{23}= & {} [\sigma ^2(D_1+D_2)^2 + 4(\mathcal {R}_1^0+\mathcal {R}_2^0)\sigma S^0(1-\sigma )D_1D_2](S^0)^2(1-\sigma )^2.\nonumber \end{aligned}$$

Note that \(T_1, T_{2i}\) and \(T_{23}\) have the common factor \(\sigma (S^0)^2(1-\sigma )^2\). Let \(T_1^{\,\prime }, T_{2i}^{\,\prime }\) and \(T_{23}^{\,\prime }\) be \(T_1, T_{2i}\) and \(T_{23}\) without this common factor, respectively. Then the first term in (5.5) is \(T_1^{\,\prime }\) and the last two terms equal \(T_{23}^{\,\prime }\). If we use mathematical software to calculate the difference between \(T_{21}^{\,\prime }D_1 + T_{22}^{\,\prime }D_2\) and the second term of (5.5), we obtain \(2S^0(1-\sigma )(\mathcal {R}_1^0-\mathcal {R}_2^0)(D_1\mathcal {R}_2^0- D_2\mathcal {R}_1^0)\). This expression equals zero because in the discussion after (5.6), we note that \(x_{21}^0\sigma (1-\mathcal {R}_2^0S^0) = x_{11}^0\sigma (1-\mathcal {R}_1^0S^0)\), which implies that \(D_1\mathcal {R}_2^0 = D_2\mathcal {R}_1^0\). The proof of Lemma 5.4 is complete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, K.W., Lui, R. Dynamics of two-strain influenza model with cross-immunity and no quarantine class. J. Math. Biol. 73, 1467–1489 (2016). https://doi.org/10.1007/s00285-016-1000-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-016-1000-x

Keywords

Mathematics Subject Classification

Navigation