Skip to main content
Log in

Large mass self-similar solutions of the parabolic–parabolic Keller–Segel model of chemotaxis

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In two space dimensions, the parabolic–parabolic Keller–Segel system shares many properties with the parabolic–elliptic Keller–Segel system. In particular, solutions globally exist in both cases as long as their mass is less than a critical threshold M c . However, this threshold is not as clear in the parabolic–parabolic case as it is in the parabolic–elliptic case, in which solutions with mass above M c always blow up. Here we study forward self-similar solutions of the parabolic–parabolic Keller–Segel system and prove that, in some cases, such solutions globally exist even if their total mass is above M c , which is forbidden in the parabolic–elliptic case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Biler P (1998) Local and global solvability of some parabolic systems modelling chemotaxis. Adv Math Sci Appl 8(2): 715–743

    MathSciNet  MATH  Google Scholar 

  • Biler P (2006) A note on the paper of Y. Naito: “Asymptotically self-similar solutions for the parabolic system modelling chemotaxis”. In: Self-similar solutions of nonlinear PDE, vol 74. Banach Center Publications, Polish Academy of Sciences, Warsaw, pp 33–40

  • Biler P, Karch G, Laurençot P, Nadzieja T (2006) The 8 π-problem for radially symmetric solutions of a chemotaxis model in the plane. Math Methods Appl Sci 29(13): 1563–1583

    Article  MathSciNet  MATH  Google Scholar 

  • Blanchet A, Carrillo JA, Masmoudi N (2008) Infinite time aggregation for the critical Patlak-Keller-Segel model in \({\mathbb{R}^2}\). Comm Pure Appl Math 61(10): 1449–1481

    Article  MathSciNet  MATH  Google Scholar 

  • Blanchet A, Dolbeault J, Perthame B (2006) Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Electron J Differ Equ 44: 32

    MathSciNet  Google Scholar 

  • Brezis H, Merle F (1991) Uniform estimates and blow-up behavior for solutions of −Δu = V(xe u in two dimensions. Comm Partial Differ Equ 16(8-9): 1223–1253

    Article  MathSciNet  MATH  Google Scholar 

  • Calvez V, Corrias L (2008) The parabolic–parabolic Keller-Segel model in \({\mathbb{R}^2}\). Commun Math Sci 6(2): 417–447

    MathSciNet  MATH  Google Scholar 

  • Cieślak T, Laurençot P (2009) Finite time blow-up for radially symmetric solutions to a critical quasilinear Smoluchowski-Poisson system. CR Math Acad Sci Paris 347(5-6): 237–242

    MATH  Google Scholar 

  • Dolbeault J, Perthame B (2004) Optimal critical mass in the two-dimensional Keller-Segel model in \({\mathbb{R}^2}\). CR Math Acad Sci Paris 339(9): 611–616

    MathSciNet  MATH  Google Scholar 

  • Hillen T, Painter KJ (2009) A user’s guide to PDE models for chemotaxis. J Math Biol 58(1-2): 183–217

    Article  MathSciNet  MATH  Google Scholar 

  • Horstmann D (2002) On the existence of radially symmetric blow-up solutions for the Keller-Segel model. J Math Biol 44(5): 463–478

    Article  MathSciNet  MATH  Google Scholar 

  • Horstmann D (2003) From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I. Jahresber Deutsch Math-Verein 105(3): 103–165

    MathSciNet  MATH  Google Scholar 

  • Mizutani Y, Muramoto N, Yoshida K (1999) Self-similar radial solutions to a parabolic system modelling chemotaxis via variational method. Hiroshima Math J 29:145–160

    MathSciNet  MATH  Google Scholar 

  • Muramoto N, Naito Y, Yoshida K (2000) Existence of self-similar solutions to a parabolic system modelling chemotaxis. Japan J Indust Appl Math 17: 427–451

    Article  MathSciNet  Google Scholar 

  • Naito Y (2006) Asymptotically self-similar solutions for the parabolic system modelling chemotaxis. In: Self-similar solutions of nonlinear PDE, vol 74. Banach Center Publications, Polish Academy of Sciences, Warsaw, pp 149–160

  • Naito Y, Suzuki T, Yoshida K (2002) Self-similar solutions to a parabolic system modeling chemotaxis. J Differ Equ 184(2): 386–421

    Article  MathSciNet  MATH  Google Scholar 

  • Raczyński A (2009) Stability property of the two-dimensional Keller–Segel model. Asymptot Anal 61: 35–59

    MathSciNet  MATH  Google Scholar 

  • Tindall MJ, Maini PK, Porter SL, Armitage JP (2008a) Overview of mathematical approaches used to model bacterial chemotaxis. II. Bacterial populations. Bull Math Biol 70(6): 1570–1607

    Article  MathSciNet  MATH  Google Scholar 

  • Tindall MJ, Porter SL, Maini PK, Gaglia G, Armitage JP (2008b) Overview of mathematical approaches used to model bacterial chemotaxis. I. The single cell. Bull Math Biol 70(6): 1525–1569

    Article  MathSciNet  MATH  Google Scholar 

  • Yoshida K (2001) Self-similar solutions of chemotactic system. Nonlinear Anal 47: 813–824

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucilla Corrias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biler, P., Corrias, L. & Dolbeault, J. Large mass self-similar solutions of the parabolic–parabolic Keller–Segel model of chemotaxis. J. Math. Biol. 63, 1–32 (2011). https://doi.org/10.1007/s00285-010-0357-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-010-0357-5

Keywords

Mathematics Subject Classification (2000)

Navigation