Skip to main content
Log in

Draconibacterium aestuarii sp.nov., a Glycolipid-Producing Bacterium Isolated from Tidal Flat Sediment and Emended Description of the Genus Draconibacterium

  • Short Communication
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A facultatively anaerobic, Gram-negative, curved rod-shaped bacterium (4.0–17.0 μm long, 0.6–0.9 μm wide), designated Z1-6T, was obtained from tidal flat sediment collected from YueAo village in Zhoushan, Zhejiang, People’s Republic of China. Strain Z1-6T occurred at 15–45 °C (optimum 28–32 °C), pH 6.0–9.0 (optimum 7.0–7.5), and in the presence of 1–5% (w/v) NaCl (optimum 1–2%). The strain contained iso-C15:0 and antesio-C15:0 as the major fatty acids. An unsaturated menaquinone with seven isoprene units (MK-7) was the predominant respiratory quinone. The polar lipids included phosphatidylethanolamine (PE), one aminophospholipid (APL), two phospholipids (PL1 and PL2), three glycolipids (GL1, GL2, and GL3), and two unidentified lipids (L1 and L2). The genomic DNA G+C content of strain Z1-6T was 39.2%, and the genome size was 6.4 Mb. The strain showed the highest average nucleotide identity (ANI) value of 73.5–74.6%, digital DNA–DNA hybridization (dDDH) value of 19.3–20%, average amino acid identity (AAI) value of 72.0–73.1% with the members of genus Draconibacterium. Phylogenetic analysis based on 16S rRNA gene sequences and genome revealed that strain Z1-6T formed a distinct branch in the clade of the genus Draconibacterium. Based on the phenotypic, phylogenetic, chemotaxonomic analyses and genomic data, strain Z1-6T represents a novel species of the genus Draconibacterium, for which the name Draconibacterium aestuarii sp. nov. (The type strain Z1-6T = MCCC 1K07533T = KCTC 92310T) is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Du Z-J, Wang Y, Dunlap C et al (2014) Draconibacterium orientale gen. nov., sp. nov., isolated from two distinct marine environments, and proposal of Draconibacteriaceae fam. nov. Int J Syst Evol Microbiol 64:1690–1696. https://doi.org/10.1099/ijs.0.056812-0

    Article  CAS  PubMed  Google Scholar 

  2. Du J, Lai Q, Liu Y et al (2015) Draconibacterium sediminis sp. nov., isolated from river sediment. Int J Syst Evol Microbiol 65:2310–2314. https://doi.org/10.1099/ijs.0.000260

    Article  CAS  PubMed  Google Scholar 

  3. Hu Y, Guo Y, Lai Q et al (2020) Draconibacterium mangrovi sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 70:4816–4821. https://doi.org/10.1099/ijsem.0.004354

    Article  CAS  PubMed  Google Scholar 

  4. Gwak J-H, Kim S-J, Jung M-Y et al (2015) Draconibacterium filum sp. nov., a new species of the genus of Draconibacterium from sediment of the east coast of the Korean Peninsula. Antonie Van Leeuwenhoek 107:1049–1056. https://doi.org/10.1007/s10482-015-0396-4

    Article  CAS  PubMed  Google Scholar 

  5. Kim M, Lee K-E, Cha I-T, Park S-J (2021) Draconibacterium halophilum sp. nov., A halophilic bacterium isolated from marine sediment. Curr Microbiol 78:2440–2446. https://doi.org/10.1007/s00284-021-02496-8

    Article  CAS  PubMed  Google Scholar 

  6. Kitahara K, Yasutake Y, Miyazaki K (2012) Mutational robustness of 16S ribosomal RNA, shown by experimental horizontal gene transfer in Escherichia coli. Proc Natl Acad Sci 109:19220–19225. https://doi.org/10.1073/pnas.1213609109

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lane JD (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  8. Kim O-S, Cho Y-J, Lee K et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721. https://doi.org/10.1099/ijs.0.038075-0

    Article  CAS  PubMed  Google Scholar 

  9. Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027. https://doi.org/10.1093/molbev/msab120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tress RP (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  Google Scholar 

  11. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/BF01734359

    Article  CAS  PubMed  Google Scholar 

  12. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  13. Simpson JT, Wong K, Jackman SD et al (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19:1117–1123. https://doi.org/10.1101/gr.089532.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Parks DH, Imelfort M, Skennerton CT et al (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.1101/gr.186072.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tatusova T, DiCuccio M, Badretdin A et al (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624. https://doi.org/10.1093/nar/gkw569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meier-Kolthoff JP, Auch AF, Klenk H-P, Goeker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60. https://doi.org/10.1186/1471-2105-14-60

    Article  Google Scholar 

  17. Richter M, Rossello-Mora R, Gloeckner FO, Peplies J (2016) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929–931. https://doi.org/10.1093/bioinformatics/btv681

    Article  CAS  PubMed  Google Scholar 

  18. Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. Abstr Gen Meet Am Soc Microbiol 105:550

    Google Scholar 

  19. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH (2020) GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36:1925–1927. https://doi.org/10.1093/bioinformatics/btz848

    Article  CAS  Google Scholar 

  20. Kalyaanamoorthy S, Minh BQ, Wong TKF et al (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589. https://doi.org/10.1038/nmeth.4285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731. https://doi.org/10.1016/j.jmb.2015.11.006

    Article  CAS  PubMed  Google Scholar 

  22. Overbeek R, Olson R, Pusch GD et al (2014) The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42:D206–D214. https://doi.org/10.1093/nar/gkt1226

    Article  CAS  PubMed  Google Scholar 

  23. Huerta-Cepas J, Forslund K, Coelho LP et al (2017) Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol 34:2115–2122. https://doi.org/10.1093/molbev/msx148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Buck JD (1982) Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993. https://doi.org/10.1128/aem.44.4.992-993.1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang X, Zheng L, Xamxidin M et al (2022) Gramella crocea sp. nov., isolated from activated sludge of a seafood processing plant. Antonie Van Leeuwenhoek 115:969–978. https://doi.org/10.1007/s10482-022-01749-1

    Article  CAS  PubMed  Google Scholar 

  26. Chen C, Han S, Zhu Z et al (2019) Idiomarina mangrovi sp. nov., isolated from rhizosphere soil of a mangrove Avicennia marina forest. Int J Syst Evol Microbiol 69:1662–1668. https://doi.org/10.1099/ijsem.0.003372

    Article  CAS  PubMed  Google Scholar 

  27. Leifson E (1963) Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184. https://doi.org/10.1128/jb.85.5.1183-1184.1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Minnikin DE, O’Donnell AG, Goodfellow M et al (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241. https://doi.org/10.1016/0167-7012(84)90018-6

    Article  CAS  Google Scholar 

  29. Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 48:459–470. https://doi.org/10.1111/j.1365-2672.1980.tb01036.x

    Article  CAS  Google Scholar 

  30. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 106:19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  PubMed  PubMed Central  Google Scholar 

  31. Konstantinidis KT, Tiedje JM (2005) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci 102:2567–2572. https://doi.org/10.1073/pnas.0409727102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xiao X, Sankaranarayanan K, Khosla C (2017) Biosynthesis and structure–activity relationships of the lipid a family of glycolipids. Curr Opin Chem Biol 40:127–137. https://doi.org/10.1016/j.cbpa.2017.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by grants from “Pioneer” and “Leading Goose” R&D Program of Zhejiang (No.2024C03123), Key R&D Program of Zhejiang (2022C0310), National Natural Science Foundation of China (no.82002208), National Science and Technology Fundamental Resources Investigation Program of China (2019FY100700) and National Science and Technology Fundamental Resources Investigation Program of China (2021FY100900).

Author information

Authors and Affiliations

Authors

Contributions

MW and GYF designed the experiments and guided the manuscript writing. JYW was responsible for the major experiments, data analysis and preparation of manuscripts. SSQ and WYP assisted in enzymatic experiments. TW assisted in the determination of fatty acids and polar lipids experiment. WWZ and YS are responsible for sample collection. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Ge-Yi Fu or Min Wu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Repositories The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain Z1-6T is OP882736. The GenBank/EMBL/DDBJ accession number for draft genome sequence of strain Z1-6T is JAPOHD000000000.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1785 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JY., Qiu, SS., Su, Y. et al. Draconibacterium aestuarii sp.nov., a Glycolipid-Producing Bacterium Isolated from Tidal Flat Sediment and Emended Description of the Genus Draconibacterium. Curr Microbiol 81, 162 (2024). https://doi.org/10.1007/s00284-024-03682-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-024-03682-0

Navigation