Skip to main content
Log in

Bacterial Strains Isolated from Stingless Bee Workers Inhibit the Growth of Apis mellifera Pathogens

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Apis mellifera bees are an important resource for the local economy of various regions in Argentina and the maintenance of natural ecosystems. In recent years, different alternatives have been investigated to avoid the reduction or loss of colonies caused by pathogens and parasites such as Ascosphaera apis, Aspergillus flavus, and Paenibacillus larvae. We focused on bacterial strains isolated from the intestine of native stingless bees, to elucidate their antagonistic effect on diseases of A. mellifera colonies. For this purpose, worker bees of the species Tetragonisca fiebrigi, Plebeia spp., and Scaptotrigona jujuyensis were captured from the entrance to tree hives and transported to the laboratory, where their intestines were extracted. Twenty bacterial colonies were isolated from the intestines, and those capable of inhibiting enterobacteria in vitro and producing organic acids, proteases, and chitinases were selected. Four genera, Levilactobacillus, Acetobacter, Lactiplantibacillus, and Pantoea, were selected and identified by the molecular marker that codes for the 16S rRNA gene. For inhibition assays, cell suspensions and cell-free suspensions were performed. All treatments showed significant antibacterial effects, in comparison with the controls, against P. larvae and antifungal effects against A. apis and A. flavus. However, the mechanisms by which these bacteria inhibit the growth of these pathogens were not studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The 16S rRNA gene amplicon data generated in the article are accessible from NCBI through the gene sequence access numbers (OQ144311, OQ144309, OQ25623, OQ144310, OQ144312) available at: http://www.ncbi.nlm.nih.gov/.

References

  1. Requier F, Antúnez K (2020) Pérdidas de colmenas en Latinoamérica. Resultados: 2016/2017 SOLATINA (Sociedad Latinoamericana de Instigación en Abejas). https://solatina.org/perdidas-2016-2017/

  2. Albo GN, Reynaldi FJ (2010) Ascosphaera apis, agente etiológico de la cría yesificada de las abejas. Rev Argent Microbiol 42(1):80

    CAS  PubMed  Google Scholar 

  3. Aronstein K, Murray KD (2010) Chalkbrood disease in honey bees. J Invertebr Pathol 103(Suppl 1):S20–S29

    Article  PubMed  Google Scholar 

  4. Jensen AB, Aronstein K, Flores JM, Vojvodic S, Palacio MA, Spivak M (2013) Standard methods for fungal brood disease research. J Apic Res 52(1):1–20

    Article  Google Scholar 

  5. Maxfield-Taylor SA, Mujic AB, Rao S (2015) First detection of the larval chalkbrood disease pathogen Ascosphaera apis (Ascomycota: Eurotiomycetes: Ascosphaerales) in adult bumble bees. PLoS ONE 10(4):e0124868

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen D, Guo R, Xiong C, Zheng Y, Hou C, Fu Z (2018) Morphological and molecular identification of chalkbrood disease pathogen Ascosphaera apis in Apis ceranae. J Apic Res 57(4):1–6

    Article  Google Scholar 

  7. Pereira KS, Meeus I, Guy S (2019) Honey bee-collected pollen is a potential source of Ascosphaera apis infection in managed bumble bees. Sci Rep 9(4241):1–9. https://doi.org/10.1038/s41598-019-40804-2

    Article  CAS  Google Scholar 

  8. Reynaldi FJ, Lucia M, Garcia Genchi ML (2015) Ascosphaera apis, the entomopathogenic fungus affecting larvae of native bees (Xylocopa augusti): first report in South America. Rev Iberoam Micol. https://doi.org/10.1016/j.riam.2015.01.001

    Article  PubMed  Google Scholar 

  9. Foley K, Fazio G, Jensen AB, Hughes WO (2014) The distribution of Aspergillus spp. opportunistic parasites in hives and their pathogenicity to honey bees. Vet Microbiol 169(3–4):203–210. https://doi.org/10.1016/j.vetmic.2013.11.029

    Article  PubMed  Google Scholar 

  10. Hatmaker EA, Miller DL, Newton I, Rokas A (2022) Draft genome sequence of an aspergillus strain isolated from a honey bee pupa. Microbiol Resour Announc 11(11):e00798-22. https://doi.org/10.1128/mra.00798-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Becchimanzi A, Nicoletti R (2022) Aspergillus-bees: A dynamic symbiotic association. Front Microbiol 13:968963. https://doi.org/10.3389/fmicb.2022.968963

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dickel F, Bos NM, Hughes H, Martín-Hernández R, Higes M, Kleiser A, Freitak D (2022) The oral vaccination with Paenibacillus larvae bacterin can decrease susceptibility to American Foulbrood infection in honey bees—a safety and efficacy study. Front Vet 9:946237. https://doi.org/10.3389/fvets.2022.946237

    Article  Google Scholar 

  13. Iorizzo M, Lombardi SJ, Ganassi S, Testa B, Ianiro M, Letizia F, Succi M, Tremonte P, Vergalito F, Cozzolino A, Sorrentino E, Coppola R, Petrarca S, Mancini M, Cristofaro A (2020) Antagonistic activity against Ascosphaera apis and functional properties of Lactobacillus kunkeei strains. Antibiotics (Basel, Switzerland) 9(5):262. https://doi.org/10.3390/antibiotics9050262

    Article  CAS  PubMed  Google Scholar 

  14. Iorizzo M, Testa B, Lombardi SJ, Ganassi S, Ianiro M, Letizia F, Succi M, Tremonte P, Vergalito F, Cozzolino A, Sorrentino E, Coppola R, Petrarca S, Mancini M, De Cristofaro A (2020) Antimicrobial activity against Paenibacillus larvae and functional properties of Lactiplantibacillus plantarum strains: potential benefits for honeybee health. Antibiotics 9:442. https://doi.org/10.3390/antibiotics9080442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blaga GV, Chițescu CL, Lisă EL, Dumitru C, Vizireanu C, Borda D (2020) Análisis de residuos antifúngicos en varios análisis de muestras de miel rumanas mediante espectrometría de masas de alta resolución. J Environ Sci Health B 55(5):484–549. https://doi.org/10.1080/03601234.2020.1724016

    Article  CAS  PubMed  Google Scholar 

  16. Bogdanov S, Charrière JD, Imdorf A, Kilchenmann V, Fluri P (2002) Determination of residues in honey after treatments with formic and oxalic acid under field conditions. Apidologie 33(4):399–409

    Article  CAS  Google Scholar 

  17. Mitton GA, Quintana S, Giménez-Martínez P, Mendoza Y, Ramallo G, Brasesco C, Villalba A, Eguaras M, Maggi MD, Ruffinengo SR (2016) First record of resistance to flumethrin in a Varroa population from Uruguay. J Apic Res 55(5):422–427. https://doi.org/10.1080/00218839.2016.1257238

    Article  Google Scholar 

  18. Thompson HM, Brown MA, Ball RF, Bew MH (2002) First report of Varroa destructor resistance to pyrethroids in U.K. Apidologie 33:357–366

    Article  CAS  Google Scholar 

  19. Audisio MC, Sabaté DC, Benítez-Ahrendts MR (2015) Effect of Lactobacillus johnsonii CRL1647 on different parameters of honeybee colonies and bacterial populations of the bee gut. Benef Microbes 6(5):687–695. https://doi.org/10.3920/BM2014.0155

    Article  CAS  PubMed  Google Scholar 

  20. Audisio MC (2017) Gram-positive bacteria with probiotic potential for the Apis mellifera L. honey bee: the experience in the northwest of Argentina. Probiotics Antimicrob Proteins 9(1):22–31. https://doi.org/10.1007/s12602-016-9231-0

    Article  CAS  PubMed  Google Scholar 

  21. Novicov-Fanciotti M, Tejerina M, Benítez-Ahrendts MR, Audisio MC (2017) Honey yield of different commercial apiaries treated with Lactobacillus salivarius A3iob, a new bee-probiotic strain. Benef Microbes 9(2):291–298. https://doi.org/10.3920/BM2017.0089

    Article  Google Scholar 

  22. Tejerina MR, Benítez-Ahrendts MR, Audisio MC (2020) Lactobacillus salivarius A3iob reduces the incidence of Varroa destructor and Nosema Spp. in commercial apiaries located in the northwest of Argentina. Probiotics Antimicrob Proteins 12(4):1360–1369. https://doi.org/10.1007/s12602-020-09638-7

    Article  PubMed  Google Scholar 

  23. Tejerina MR, Cabana MJ, Benitez-Ahrendts MR (2021) Strains of Lactobacillus spp. reduce chalkbrood in Apis mellifera. J Invertebr Pathol 178:107521. https://doi.org/10.1016/j.jip.2020.107521

    Article  CAS  PubMed  Google Scholar 

  24. Anderson KE, Carroll MJ, Sheehan T, Mott BM, Maes P, Corby-Harris V (2014) Hive-stored pollen of honey bees: many lines of evidence are consistent with pollen preservation, not nutrient conversion. Mol Ecol 23:5904–5917. https://doi.org/10.1111/mec.12966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tlak I, Nejedli S, Cvetnić L (2023) Influence of probiotic feed supplement on Nosema spp. infection level and the gut microbiota of adult honeybees (Apis mellifera L.). Microorganisms 11(3):610. https://doi.org/10.3390/microorganisms1103061

    Article  Google Scholar 

  26. Audisio MC, Benítez-Ahrendts MR (2011) Lactobacillus johnsonii CRL1647, isolated from Apis mellifera L. bee-gut, exhibited a beneficial effect on honeybee colonies. Benef Microbes 2(1):29–34. https://doi.org/10.3920/BM2010.0024

    Article  CAS  PubMed  Google Scholar 

  27. Vásquez A, Forsgren E, Fries I, Paxton RJ, Flaberg E, Szekely L, Olofsson TC (2012) Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS ONE 7:e33188. https://doi.org/10.1371/journal.pone.0033188.t002

    Article  PubMed  PubMed Central  Google Scholar 

  28. Albo G, Córdoba S, Reynaldi F (2017) Chalkbrood: pathogenesis and the interaction with honeybee defenses. Int J Environ Agric Res 3(1):71–80

    Google Scholar 

  29. Forsgren E, Olofsson T, Vásquez A, Fries I (2009) Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie 41:99–108

    Article  Google Scholar 

  30. McFrederick QS, Wcislo WT, Taylor DR, Ishak HD, Dowd SE, Mueller UG (2012) Environment or kin: whence do bees obtain acidophilic bacteria? Mol Ecol 21:1754–1768. https://doi.org/10.1111/j.1365-294X.2012.05496.x

    Article  PubMed  Google Scholar 

  31. de Paula GT, Menezes C, Pupo MT, Rosa CA (2021) Stingless bees and microbial interactions. Curr Opin Insect Sci 44:41–47. https://doi.org/10.1016/j.cois.2020.11.006

    Article  PubMed  Google Scholar 

  32. Michener CD (2013) The meliponini. In: Vit P, Pedro SR, Roubik D (eds) Pot-honey: a legacy of stingless bees. New York, Springer, pp 3–17

    Chapter  Google Scholar 

  33. Roig-Alsina AH, Alvarez LJ (2017) Southern distributional limits of Meliponini bees (Hymenoptera, Apidae) in the Neotropics: taxonomic notes and distribution of Plebeia droryana and P emerinoides in Argentina. Zootaxa 4244:261–268. https://doi.org/10.11646/zootaxa.4244.2.7

    Article  PubMed  Google Scholar 

  34. Porrini MP, Porrini LP, Garrido PM, de Melo E, Silva Neto C, Porrini DP, Muller F, Nuñez LA, Alvarez L, Iriarte PF, Eguaras MJ (2017) Nosema ceranae in South American native stingless bees and social wasp. Microb Ecol 74(4):761–764. https://doi.org/10.1007/s00248-017-0975-1

    Article  PubMed  Google Scholar 

  35. Flores FF, Hilgert NI, Lupo LC (2018) Melliferous insects and the uses assigned to their products in the northern Yungas of Salta. Argentina. J Ethnobiol Ethnomed 14:27. https://doi.org/10.1186/s13002-018-0222-y

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zamudio F, Hilgert NI (2012) Descriptive attributes used in the characterization of stingless bees (Apidae: Meliponini) in rural populations of the Atlantic forest (Misiones-Argentina). J Ethnobiol Ethnomed. https://doi.org/10.1186/1746-4269-8-9

    Article  PubMed  PubMed Central  Google Scholar 

  37. Flores FF, Sánchez AC (2010) Primeros resultados de la caracterización botánica de mieles producidas por Tetragonisca angustula (Apidae, Meliponinae) en Los Naranjos, Salta, Argentina. Bol Soc Argent Bot 45(1–2):81–91

    Google Scholar 

  38. Vit P, Gutiérrez MG, Rodríguez-Malaver AJ, Aguilera G, Fernández-Díaz C Tricio AE (2009) Comparación de mieles producidas por la abeja yateí (Tetragonisca fiebrigi)en Argentina y Paraguay. Acta bioquímica clín latinoam 43(2):219–226

    Google Scholar 

  39. Kwong WK, Medina LA, Koch H, Sing KS, Soh EJY, Ascher JS, Jaffé R, Moran NA (2017) Dynamic microbiome evolution in social bees. Sci Adv 3:e1600513. https://doi.org/10.1126/sciadv.1600513

    Article  PubMed  PubMed Central  Google Scholar 

  40. Leonhardt SD, Kaltenpoth M (2014) Microbial communities of three sympatric australian stingless bee species. PLoS ONE 9(8):e105718. https://doi.org/10.1371/journal.pone.0105718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. de Sousa LP (2021) Bacterial communities of indoor surface of stingless bee nests. PLoS ONE 16(7):e0252933. https://doi.org/10.1371/journal.pone.0252933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Romero S, Nastasa A, Chapman A, Kwong WK, Foster LJ (2019) The honey bee gut microbiota: strategies for study and characterization. Insect Mol Biol 28:455–472. https://doi.org/10.1111/imb.12567

    Article  CAS  PubMed  Google Scholar 

  43. Audisio MC, Torres MJ, Sabaté DC, Ibarguren C, Apella MC (2011) Properties of different lactic acid bacteria isolated from Apis mellifera L bee-gut. Microbiol Res 166(1):1–13. https://doi.org/10.1016/j.micres.2010.01.003

    Article  CAS  Google Scholar 

  44. Alvarado I, Phui A, Elekonich MM, Abel-Santos E (2013) Requirements for in vitro germination of Paenibacillus larvae spores. J Bacteriol 195(5):1005–1011. https://doi.org/10.1128/JB.01958-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gustaw K, Michalak M, Polak-Berecka M et al (2018) Isolation and characterization of a new fructophilic Lactobacillus plantarum FPL strain from honeydew. Ann Microbiol 68:459–470. https://doi.org/10.1007/s13213-018-1350-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mani-López E, Arrioja-Bretón D, López-Malo A (2022) The impacts of antimicrobial and antifungal activity of cell-free supernatants from lactic acid bacteria in vitro and foods. Compr Rev Food Sci Food Saf 21:604–641. https://doi.org/10.1111/1541-4337.12872

    Article  CAS  PubMed  Google Scholar 

  47. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley & Sons Inc., New York, pp 115–176

    Google Scholar 

  48. Tejerina MR, Cabana MJ, Flores JM, Benitez Ahrendtset MR (2019) Estudios de cepas de Ascosphaera apis aisladas de pólenes comerciales de diferentes provincias españolas y su capacidad de producción enzimática. Arch Zootec 68(263):324–330. https://doi.org/10.21071/az.v68i263.41

    Article  CAS  Google Scholar 

  49. Gonelimali FD, Lin J, Miao W, Xuan J, Charles F, Chen M, Hatab SR (2018) Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front Microbiol 9:1639. https://doi.org/10.3389/fmicb.2018.01639

    Article  PubMed  PubMed Central  Google Scholar 

  50. Agrawal T, Kotasthane AS (2012) Chitinolytic assay of indigenous Trichoderma isolates collected from different geographical locations of Chhattisgarh in Central India. Springerplus 1(73):1–10. https://doi.org/10.1186/2193-1801-1-73

    Article  Google Scholar 

  51. Di Rienzo JA, Casanoves F, Balzanini MG, Gonzalez L, Tablada M, Robledo CW (2008) Grupo Infostat, versión 2008, FCA, Univ. Nacional de Córdoba, Argentina

    Google Scholar 

  52. Masoura M, Passaretti P, Overton TW et al (2020) Use of a model to understand the synergies underlying the antibacterial mechanism of H2O2-producing honeys. Sci Rep 10:17692. https://doi.org/10.1038/s41598-020-74937-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Saadouli I, Mosbah A, Ferjani R, Stathopoulou P, Galiatsatos I, Asimakis E, Marasco R, Daffonchio D, Tsiamis G, Ouzari H-I (2021) The impact of the inoculation of phosphate-solubilizing bacteria Pantoea agglomerans on phosphorus availability and bacterial community dynamics of a semi-arid soil. Microorganisms 9:1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zinn MK, Bockmühl D (2020) Did granny know best? Evaluating the antibacterial, antifungal and antiviral efficacy of acetic acid for home care procedures. BMC Microbiol 20:265. https://doi.org/10.1186/s12866-020-01948-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Orhan F, Demirci A, Gormez A (2021) Carbonate and silicate dissolving bacteria isolated from home-made yogurt samples. An Acad Bras Cienc 93(4):e20200002. https://doi.org/10.1590/0001-3765202120200002

    Article  CAS  PubMed  Google Scholar 

  56. Gullo M, De Vero L, Giudici P (2009) Succession of selected strains of Acetobacter pasteurianus and other acetic acid bacteria in traditional balsamic vinegar. Appl Environ Microbiol 75(8):2585–2589. https://doi.org/10.1128/AEM.02249-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Solanki P, Putatunda C, Kumar A, Bhatia R, Walia A (2021) Microbial proteases: ubiquitous enzymes with innumerable uses. 3 Biotech 11(10):428. https://doi.org/10.1007/s13205-021-02928-z

    Article  PubMed  PubMed Central  Google Scholar 

  58. Taufik I, Apon ZM, Bugi RB, Kustiariyah T (2016) Antibacterial activity of extracellular protease isolated from an algicolous fungus Xylaria psidii KT30 against Gram-positive bacteria. HAYATI J Biosci 23(2):73–78. https://doi.org/10.1016/j.hjb.2016.06.005

    Article  Google Scholar 

  59. Bossi A, Bonizzato L, Zapparoli G (2006) Acidic extracellular proteases from microrganisms of fairly acidic niche. Protein Pept Lett 13(7):737–741. https://doi.org/10.2174/092986606777790647

    Article  CAS  PubMed  Google Scholar 

  60. Park HJ, Yun D-J (2013) Chapter five—new insights into the role of the small ubiquitin-like modifier (SUMO) in plants. In: Jeon KW (ed) International review of cell and molecular biology, vol 300. Academic Press, New York, pp 161–209. https://doi.org/10.1016/B978-0-12-405210-9.00005-9

    Chapter  Google Scholar 

  61. Saima MK, Roohi IZA (2013) Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase. J Genetic Eng Biotechnol 11(1):39–46

    Article  Google Scholar 

  62. Sasi A, Duraipandiyan N, Marikani K, Dhanasekaran S, Al-Dayan N, Venugopal D (2020) Identification and characterization of a newly isolated chitinase-producing strain Bacillus licheniformis SSCL-10 for chitin degradation. Archaea (Vancouver, BC) 2020:8844811. https://doi.org/10.1155/2020/8844811

    Article  CAS  Google Scholar 

  63. Díaz S, de Souza US, Caesar L, Blochtein B, Sattler A, Zuge V, Luisa HK (2017) Report on the microbiota of Melipona quadrifasciata affected by a recurrent disease. J Invert Pathol 143:35–39. https://doi.org/10.1016/j.jip.2016.11.012

    Article  Google Scholar 

  64. Ngalimat MS, Abd RNZR, Raja Abd Rahman RNZ, Yusof MT, Syahir A, Sabri S (2019) Characterisation of bacteria isolated from the stingless bee, Heterotrigona itama, honey, bee bread and propolis. Peer J 7:e7478. https://doi.org/10.7717/peerj.7478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rodriguez-Hernandez D, Melo WGP, Menegatti C, Lourenzon VB, Nascimento FS, Pupo MT (2019) Actinobacteria associated with stingless bee biosynthesize bioactive polyketides against bacterial pathogen. New J Chem 43:10109–10117. https://doi.org/10.1039/C9NJ01619H

    Article  CAS  Google Scholar 

  66. Suphaphimol N, Attasopa K, Pakwan C, Chantawannkul P, Disavathanoowat T (2020) Cultured-dependent and cultured-independent study of bacteria associated with Thai commercial stingless bee Lepidotrigona terminate. J Apic Res. https://doi.org/10.1080/00218839.2020.1831285

    Article  Google Scholar 

  67. Leska A, Nowak A, Szulc J, Motyl I, Czarnecka-Chrebelska KH (2022) Antagonistic activity of potentially probiotic lactic acid bacteria against honeybee (Apis mellifera L.) pathogens. Pathogens 11(11):1367. https://doi.org/10.3390/pathogens11111367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ruíz-Ramírez Y, Guadarrama-Mendoza PC, Escalante A, Giles-Gómez M, Valadez-Blanco R (2022) Probiotic activity traits in vitro and production of antimicrobial peptides by Lactobacillaceae isolates from pulque using Lactobacillus acidophilus NCFM as control. Braz J Microbiol 53(2):921–933. https://doi.org/10.1007/s42770-022-00684-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Haghshenas B, Nami Y, Abdullah N, Radiah D, Rosli R, Barzegari A, Yari Khosroushahi A (2015) Potentially probiotic acetic acid bacteria isolation and identification from traditional dairies microbiota. Int J Food Sci Technol 50:1056–1064. https://doi.org/10.1111/ijfs.12718

    Article  CAS  Google Scholar 

  70. Spinler JK, Taweechotipatr M, Rognerud CL, Ou CN, Tumwasorn S, Versalovic J (2008) Human-derived probiotic Lactobacillus reuteri demonstrate antimicrobial activities targeting diverse enteric bacterial pathogens. Anaerobe 14:166–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Safari MS, Keyhanfar M, Shafiei R (2019) Investigating the antibacterial effects of some Lactobacillus, Bifidobacterium and acetobacter strains killed by different methods on Streptococcus mutans and Escherichia coli. Mol Biol Res Commun 8(3):103–111. https://doi.org/10.22099/mbrc.2019.33582.1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Prado Acosta M, Mersedes Palomino M, Allievi MC, Sanchez Rivas C, Ruzal SM (2008) Murein hydrolase activity in the surface layer of Lactobacillus acidophilus ATCC 4356. Appl Environ Microbiol 74:7824–7827

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wright SA, Zumoff CH, Schneider L, Beer SV (2001) Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl Environ Microbiol 67(1):284–292. https://doi.org/10.1128/AEM.67.1.284-292.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pusey PL, Stockwell VO, Rudell DR (2008) Antibiosis and acidification by Pantoea agglomerans strain E325 may contribute to suppression of Erwinia amylovora. Phytopathology 98(10):1136–1143. https://doi.org/10.1094/PHYTO-98-10-1136

    Article  CAS  PubMed  Google Scholar 

  75. Vanneste JL, Yu J, Beer SV (1992) Role of antibiotic production by Erwinia herbicola Eh252 in biological control of Erwinia amylovora. J Bacteriol 174:2785–2796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wodzinski RS, Paulin JP (1994) Frequency and diversity of antibiotic production by putative Erwinia herbicola strains. J Appl Bacteriol 76:603–607

    Article  CAS  Google Scholar 

  77. Abdolmaleki K, Javanmardi F, Gavahian M, Phimolsiripol Y, Ruksiriwanich W, Mir SA, Mousavi Khaneghah A (2022) Tecnologías emergentes en combinación con probióticos para la eliminación de aflatoxinas: una actualización revisar. Int J Food Sci Technol 57:5712–5721. https://doi.org/10.1111/ijfs.15926

    Article  CAS  Google Scholar 

  78. Somashekaraiah R, Mottawea W, Gunduraj A, Joshi U, Hammami R, Sreenivasa MY (2021) Probiotic and antifungal attributes of Levilactobacillus brevis MYSN105, isolated from an Indian Traditional Fermented Food Pozha. Front Microbiol 12:696267. https://doi.org/10.3389/fmicb.2021.696267

    Article  PubMed  PubMed Central  Google Scholar 

  79. Miller DL, Smith EA, Newton ILGA (2021) Bacterial symbiont protects honey bees from fungal disease. mBio 12(3):e00503-21. https://doi.org/10.1128/mbio.00503-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Iorizzo M, Testa B, Ganassi S, Lombardi SJ, Ianiro M, Letizia F, Succi M, Tremonte P, Vergalito F, Cozzolino A, Sorrentino E, Petrarca S, De Cristofaro A, Coppola R (2021) Probiotic properties and potentiality of Lactiplantibacillus plantarum strains for the biological control of chalkbrood disease. J Fungi (Basel, Switzerland) 7(5):379. https://doi.org/10.3390/jof7050379

    Article  CAS  Google Scholar 

  81. Poornachandra Rao K, Deepthi BV, Rakesh S, Ganesh T, Achar P, Sreenivasa MY (2019) Antiaflatoxigenic potential of cell-free supernatant from Lactobacillus plantarum MYS44 against Aspergillus parasiticus. Probiotics Antimicrob Proteins 11(1):55–64. https://doi.org/10.1007/s12602-017-9338-y

    Article  CAS  PubMed  Google Scholar 

  82. Dagnas S, Gauvry E, Onno B, Membré J-M (2015) Quantifying effect of lactic, acetic, and propionic acids on growth of molds isolated from spoilesd bakery products. J Food Prot 78(9):1689–1698. https://doi.org/10.4315/0362-028X.JFP-15-046

    Article  CAS  PubMed  Google Scholar 

  83. Lorenzi AS, Bonatelli ML, Chia MA, Peressim L, Quecine MC (2022) Opposite sides of Pantoea agglomerans and its associated commercial outlook. Microorganisms 10(10):2072. https://doi.org/10.3390/microorganisms10102072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Thissera B, Alhadrami HA, Hassan MHA, Hassan HM, Bawazeer M, Yaseen M, Belbahri L, Rateb ME, Behery FA (2020) Induction of cryptic antifungal pulicatin derivatives from Pantoea agglomerans by microbial co-culture. Biomolecules 10:268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cherif-Silini H, Thissera B, Bouket AC, Saadaoui N, Silini A, Eshelli M, Alenezi FN, Vallat A, Luptakova L, Yahiaoui B et al (2019) Durum wheat stress tolerance induced by endophyte Pantoea agglomerans with genes contributing to plant functions and secondary metabolite arsenal. Int J Mol Sci 20:3989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chávez González JD, Rodríguez Barrera MA, Romero Ramírez Y, Ayala Sánchez A, Ruvalcaba Ledezma JC, Toribio-Jiménez J (2016) Pantoea agglomerans productora de biosurfactante aislada de rizosfera de pastos Tanzania y Llanero. Rev Mex Cienc Agríc 7(4):961–968

    Google Scholar 

  87. Bonaterra A, Mari M, Casalini L, Montesinos E (2003) Control biológico de Monilinia laxa y Rhizopus stolonifer en poscosecha de fruta de hueso por Pantoea agglomerans EPS125 y mecanismos putativos de antagonismo. Int J Food Microbiol 84:93–104

    Article  PubMed  Google Scholar 

  88. Muthukumarasamy R, Revathi G, Vadivelu M (2000) Antagonistic potential of N2-fixing Acetobacter diazotrophicus against Colletotrichum falcatum Went., a causal organism of red-rot of sugarcane. Curr Sci 78(9):1063–1065

    Google Scholar 

  89. Stratford M, Plumridge A, Nebe-von-Caron G, Archer DB (2009) La inhibición del deterioro de las conidias de moho por el ácido acético y el ácido sórbico implica diferentes modos de acción, lo que requiere la modificación de la teoría clásica de los ácidos débiles. Int J Food Microbiol 136:37–43

    Article  CAS  PubMed  Google Scholar 

  90. Tang QH, Miao CH, Chen YF et al (2021) The composition of bacteria in gut and beebread of stingless bees (Apidae: Meliponini) from tropics Yunnan China. Antonie Van Leeuwenhoek 114:1293–1305. https://doi.org/10.1007/s10482-021-01602-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Part of the experimental work was funded by Secretaría de Ciencia y Tecnica de Estudios Regionales, Universidad Nacional de Jujuy (SeCTER-UNJu). Marcos Raúl Tejerina has a postdoctoral studies fellowship from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-Argentina) and María Isabel Fonseca is a career member of CONICET.

Author information

Authors and Affiliations

Authors

Contributions

MRT: wrote the manuscript and conceived and designed the research. MJC and PAE: conducted experiments and collected data. MRBA and MIF: analyzed the data and edited the manuscript. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Marcos Raúl Tejerina.

Ethics declarations

Conflict of Interest

The authors have no financial or proprietary interests in any material discussed in this article.

Informed Consent

The study contains no individual person’s data in any form. Informed consent is not applicable.

Research Involving Human and Animal Rights

The study did not involve human participants and/or vertebrate animals.

Originality-Significance Statement

This work offers a first insight into the beneficial interactions between bacterial strains and stingless bees in the control of diseases transmitted between species of bees. The function of bacterial in bee colonies, a topic little explored to date, could be the key to the control of pathogens of stingless bees and A. mellifera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

284_2024_3618_MOESM1_ESM.pdf

Supplementary file1—Figure S1: Qualitative observation: a) colonies producing organic acids Acetobacter ghanensis strain LSAMT; b) colonies producing Levilactobacillus brevis strain LSAMM proteases; c) colonies producing Lactiplantibacillus plantarum strain LSAMS chitinases; d) colonies producing organic acids Pantoea agglomerans strain LSAMP; e) colonies producing Levilactobacillus brevis strain LSAMN proteases; f) production of chitinases Levilactobacillus brevis strain LSAMN. Figure S2: Observation of inhibitory zones of P. larvae with CS and CFS: a) Levilactobacillus brevis strain LSAMN; b) Levilactobacillus brevis strain LSAMM; c) Acetobacter ghanensis strain LSAMT; d) Pantoea agglomerans strain LSAMP; e) Lactiplantibacillus plantarum strain LSAMS. Figure S3: A) Observation of biomass growth of the inoculums of A. apis with CS. B) Observation of biomass growth of the inoculums of A. apis with CFS. Figure S4: A) Observation of the growth in biomass of the inoculums of A. flavus with CS. B) Observation of the growth in biomass of the inoculums of A. flavus with CFS.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tejerina, M.R., Cabana, M.J., Enríquez, P.A. et al. Bacterial Strains Isolated from Stingless Bee Workers Inhibit the Growth of Apis mellifera Pathogens. Curr Microbiol 81, 106 (2024). https://doi.org/10.1007/s00284-024-03618-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-024-03618-8

Navigation