Skip to main content
Log in

Microbulbifer litoralis sp. nov., Isolated from Seashore of Weizhou Island

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A bacterium designated GXH0434T was isolated from sea shore samples collected from Weizhou Island, Beihai, Guangxi, China. The organism is motile, strictly aerobic, and possesses a rod–coccus cell cycle in association with the growth phase. It can grow at 15–45 °C (optimum 37 °C), at pH 6.0–11.0 (optimum 6.0), and at 0–20% (w/v) NaCl (optimum 5.0–8.0%). The strain is positive for peroxidase and oxidase activity, negative for Voges-Proskauer test, can hydrolyze Tween 20, Tween 60, Tween 80, casein, and is able to produce siderophore and has the function of nitrogen fixation. Molecular phylogenetic analysis based on 16S rRNA gene sequences indicated that GXH0434T was most closely related to Microbulbifer halophilus KCTC 12848T with the similarity of 97.2%, followed by Microbulbifer chitinilyticus JCM 16148T (97.1%) and Microbulbifer taiwanensis LMG 26125T (96.5%). The digital DNA-DNA hybridization and the average nucleotide identity values between GXH0434T and Microbulbifer halophilus KCTC 12848T were 28.90% and 83.38%, respectively, which were below thresholds of species delineation. The genomic DNA G+C content of the strain was 61.9%. The major fatty acids were iso-C15:0, C16:0, iso-C11:0 3-OH, iso-C11:0 and Summed features 8 (C18:0 ω7c and/or C18:0 ω6c). The major polar lipids detected in GXH0434T were diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC). The major respiratory quinone was ubiquinone Q-8. Based on the above polyphasic classification indicated strain GXH0434T represents a novel species of the genus Microbulbifer, for which the name Microbulbifer litoralis sp. nov. is proposed. The type strain is GXH0434T (= MCCC 1K07158T = KCTC 92169T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. González JM, Mayer F, Moran MA, Hodson RE, Whitman WB (1997) Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 47:369–376

    Article  PubMed  Google Scholar 

  2. Nishijima M, Takadera T, Imamura N, Kasai H, An KD, Adachi K, Nagao T, Sano H, Yamasato K (2009) Microbulbifer variabilis sp. nov. and Microbulbifer epialgicus sp. nov., isolated from Pacific marine algae, possess a rod-coccus cell cycle in association with the growth phase. Int J Syst Evol Microbiol 59(Pt 7):1696–1707. https://doi.org/10.1099/ijs.0.006452-0

    Article  CAS  PubMed  Google Scholar 

  3. Cheng Y, Zhu S, Guo C, Xie F, Jung D, Li S, Zhang W, He S (2021) Microbulbifer hainanensis sp. nov., a moderately halopilic bacterium isolated from mangrove sediment. Antonie Van Leeuwenhoek 114(7):1033–1042. https://doi.org/10.1007/s10482-021-01574-y

    Article  CAS  PubMed  Google Scholar 

  4. Vashist P, Nogi Y, Ghadi SC, Verma P, Shouche YS (2013) Microbulbifer mangrovi sp. Nov., a polysaccharide-degrading bacterium isolated from an Indian mangrove. Int J Syst Evol Microbiol 63(Pt 7):2532–2537. https://doi.org/10.1099/ijs.0.042978-0

    Article  CAS  PubMed  Google Scholar 

  5. Park S, Yoon SY, Ha MJ, Yoon JH (2017) Microbulbifer aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 67(5):1436–1441. https://doi.org/10.1099/ijsem.0.001831

    Article  CAS  PubMed  Google Scholar 

  6. Miyazaki M, Nogi Y, Ohta Y, Hatada Y, Fujiwara Y, Ito S, Horikoshi K (2008) Microbulbifer agarilyticus sp. nov. and Microbulbifer thermotolerans sp. Nov., agar-degrading bacteria isolated from deep-sea sediment. Int J Syst Evol Microbiol 58(Pt 5):1128–1133. https://doi.org/10.1099/ijs.0.65507-0

    Article  CAS  PubMed  Google Scholar 

  7. Zhang DS, Huo YY, Xu XW, Wu YH, Wang CS, Xu XF, Wu M (2012) Microbulbifer marinus sp. nov. and Microbulbifer yueqingensis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 62(Pt 3):505–510. https://doi.org/10.1099/ijs.0.027714-0

    Article  CAS  PubMed  Google Scholar 

  8. Yoon JH, Kim IG, Oh TK, Park YH (2004) Microbulbifer maritimus sp. nov., isolated from an intertidal sediment from the Yellow Sea, Korea. Int J Syst Evol Microbiol 54(Pt 4):1111–1116. https://doi.org/10.1099/ijs.0.02985-0

    Article  CAS  PubMed  Google Scholar 

  9. Yoon JH, Kim IG, Shin DY, Kang KH, Park YH (2003) Microbulbifer salipaludis sp. Nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 53(Pt1):53–57. https://doi.org/10.1099/ijs.0.02342-0

    Article  CAS  PubMed  Google Scholar 

  10. Zhong W, Deutsch JM, Yi D, Abrahamse NH, Mohanty I, Moore SG, McShan AC, Garg N (2023) Discovery and biosynthesis of ureidopeptide natural products macrocyclized via indole n-acylation in marine Microbulbifer spp. Bacteria Chembiochem 24(12):e202300190. https://doi.org/10.1002/cbic.202300190

    Article  CAS  PubMed  Google Scholar 

  11. Li H, Huang X, Yao S, Zhang C, Hong X, Wu T, Jiang Z, Ni H, Zhu Y (2022) Characterization of a bifunctional and endolytic alginate lyase from Microbulbifer sp. ALW1 and its application in alginate oligosaccharides production from Laminaria japonica. Protein Expr Purif 200:106171. https://doi.org/10.1016/j.pep.2022.106171

    Article  CAS  PubMed  Google Scholar 

  12. Cho JY, Kim SH, Jung HJ, Cho DH, Kim BC, Bhatia SK, Ahn J, Jeon JM, Yoon JJ, Lee J, Yang YH (2022) Finding a benign plasticizer to enhance the microbial degradation of polyhydroxybutyrate (PHB) evaluated by PHB degrader Microbulbifer sp. SOL66. Polymers (Basel). 14(17):3625. https://doi.org/10.3390/polym14173625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de Lamballerie X, Zandotti C, Vignoli C, Bollet C, de Micco P (1992) A one-step microbial DNA extraction method using Chelex 100 suitable for gene amplification. Res Microbiol 143:785–790. https://doi.org/10.1016/0923-2508(92)90107-Y

    Article  PubMed  Google Scholar 

  14. Chun J, Goodfellow M (1995) A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45(2):240–245. https://doi.org/10.1099/00207713-45-2-240

    Article  CAS  PubMed  Google Scholar 

  15. Yoon SH, Kwon S, Lim J, Kim Y (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole- genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tamura K, Stecher G, Kumar S (2021) MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 38(7):3022–3027. https://doi.org/10.1093/molbev/msab120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  18. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/BF01734359

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 20:406–416. https://doi.org/10.1093/sysbio/20.4.406

    Article  Google Scholar 

  20. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120. https://doi.org/10.1007/BF01731581

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.2307/2408678

    Article  PubMed  Google Scholar 

  22. Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884–i890. https://doi.org/10.1093/bioinformatics/bty560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wick RR, Judd LM, Gorrie CL (2017) Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13(6):e1005595. https://doi.org/10.1371/journal.pcbi.1005595

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Meier-Kolthoff JP, Sardà Carbasse J, Peinado-Olarte RL, Göker M (2022) TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acid Res 50:D801–D807. https://doi.org/10.1093/nar/gkab902

    Article  CAS  PubMed  Google Scholar 

  25. Meier-Kolthoff JP, Auch AF (2013) Klenk, HP (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60. https://doi.org/10.1186/1471-2105-14-60

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286

    Article  CAS  PubMed  Google Scholar 

  27. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al (2021) AntiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 49(1):29–35

    Article  Google Scholar 

  28. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al (2017) Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 45:D535–D542

    Article  CAS  PubMed  Google Scholar 

  29. Brown AE (2007) Benson’s microbiological application laboratory manual in general microbiology, 10th edn. McGraw-Hill, New York

    Google Scholar 

  30. Gonzalez C, Gutierrez C, Ramirez C (1978) Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715. https://doi.org/10.1139/m78-119

    Article  CAS  PubMed  Google Scholar 

  31. Collins MD (1977) Distrbution of menaquinone in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230. https://doi.org/10.1099/00221287-100-2-221

    Article  ADS  CAS  PubMed  Google Scholar 

  32. MinnikinO’donnell DA, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett J (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241. https://doi.org/10.1016/0167-7012(84)90018-6

    Article  Google Scholar 

  33. Sasser M, Kunitsky C, Jackoway G, Ezzell JW, Teska JD (2005) Identification of Bacillus anthracis from culture using gas chromatographic analysis of fatty acid methyl esters. J AOAC Int 88:178–181. https://doi.org/10.1093/jaoac/88.1.178

    Article  CAS  PubMed  Google Scholar 

  34. Tang SK, Wang Y, Cai M, Lou K, Mao PH, Jin X, Jiang CL, Xu LH, Li WJ (2008) Microbulbifer halophilus sp. nov., a moderately halophilic bacterium from north-west China. Int J Syst Evol Microbiol 58(9):2036–2040. https://doi.org/10.1099/ijs.0.65519-0

    Article  CAS  PubMed  Google Scholar 

  35. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461. https://doi.org/10.1099/ijsem.0.002516

    Article  CAS  PubMed  Google Scholar 

  36. Liu R, Zhang Y, Chen P, Lin H, Ye G, Wang Z, Ge C, Zhu B, Ren D (2017) Genomic and phenotypic analyses of Pseudomonas psychrotolerans PRS08–11306 reveal a turnerbactin biosynthesis gene cluster that contributes to nitrogen fixation. J Biotechnol 253:10–13. https://doi.org/10.1016/j.jbiotec.2017.05.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Korean Collection of Type Cultures (KCTC) for providing strain Microbulbifer halophilus KCTC 12848T, and Marine Culture Collection of China (MCCC) and Korean Collection for Type Cultures (KCTC) for strain deposited, as well as members of the Guangxi Key Laboratory of Polysaccharide Materials and Modifications and Yunnan Institute of Microbiology of Yunnan University for helpful discussions.

Funding

This research was funded by the Science and Technology Major Project of Guangxi (AA18242026) and Guangxi University Young and Mid-aged Teachers’ Basic Scientific Research Ability Improvement Project of Universities in Guangxi, China (2021KY0175).

Author information

Authors and Affiliations

Authors

Contributions

MJ and YJ designed the study; YH, YJ, AZ and XC performed research; YL, FW and HL analyzed data. YNI and WH resource; YH wrote the manuscript. All of the authors contributed to the manuscript revision process and read and approved the submitted version.

Corresponding authors

Correspondence to Mingguo Jiang or Yi Jiang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene and the genome sequences of strain GXH0434T are OL336515 and JALKCV000000000, respectively. Strain GXH0434T has been deposited in Marine Culture Collection of China (MCCC) and Korean Collection for Type Cultures (KCTC), the preservation number are MCCC 1K07158 and KCTC 92169, respectively.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1095 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Jiang, Y., Zhao, A. et al. Microbulbifer litoralis sp. nov., Isolated from Seashore of Weizhou Island. Curr Microbiol 81, 105 (2024). https://doi.org/10.1007/s00284-023-03594-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03594-5

Navigation