Skip to main content

Advertisement

Log in

Molecular Evidence for Occurrence of Heavy Metal and Antibiotic Resistance Genes Among Predominant Metal Tolerant Pseudomonas sp. and Serratia sp. Prevalent in the Teesta River

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Riverine ecosystems polluted by pharmaceutical and metal industries are potential incubators of bacteria with dual resistance to heavy metals and antibiotics. The processes of co-resistance and cross resistance that empower bacteria to negotiate these challenges, strongly endorse dangers of antibiotic resistance generated by metal stress. Therefore, investigation into the molecular evidence of heavy metal and antibiotic resistance genes was the prime focus of this study. The selected Pseudomonas and Serratia species isolates evinced by their minimum inhibitory concentration and multiple antibiotic resistance (MAR) index showed significant heavy metal tolerance and multi-antibiotic resistance capability, respectively. Consequently, isolates with higher tolerance for the most toxic metal cadmium evinced high MAR index value (0.53 for Pseudomonas sp., and 0.46 for Serratia sp.) in the present investigation. Metal tolerance genes belonging to PIB-type and resistance nodulation division family of proteins were evident in these isolates. The antibiotic resistance genes like mexB, mexF and mexY occurred in Pseudomonas isolates while sdeB genes were present in Serratia isolates. Phylogenetic incongruency and GC composition analysis of PIB-type genes suggested that some of these isolates had acquired resistance through horizontal gene transfer (HGT). Therefore, the Teesta River has become a reservoir for resistant gene exchange or movement via selective pressure exerted by metals and antibiotics. The resultant adaptive mechanisms and altered phenotypes are potential tools to track metal tolerant strains with clinically significant antibiotic resistance traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The gene sequences have been submitted in NCBI database and accessions obtained which are available in the database.

Code Availability

Not applicable.

References

  1. Khan GA, Berglund B, Khan KM, Lindgren PE, Fick J (2013) Occurrence and abundance of antibiotics and resistance genes in rivers, canal and near drug formulation facilities—a study in Pakistan. PLoS ONE 8:62712–62720. https://doi.org/10.1371/journal.pone.0062712

    Article  CAS  Google Scholar 

  2. Zheng B, Lu S, Wu J, Guo X, Wu F, Li W, He Q, Fu Z, Xu L (2018) Heavy metal distribution in Tiaoxi river’s sediment. Environ Sci Pollut Res 25:2603–2613. https://doi.org/10.1007/s11356-017-0332-4

    Article  CAS  Google Scholar 

  3. Klerks PL, Weis JS (1987) Genetic adaptation to heavy metals in aquatic organisms: a review. Environ Pollut 45:173–205. https://doi.org/10.1016/0269-7491(87)90057-1

    Article  CAS  PubMed  Google Scholar 

  4. Rajkumar B, Sharma GD, Paul AK (2012) Isolation and characterization of heavy metal resistant bacteria from Barak river contaminated with pulp paper mill effluent, South Assam. Bull Environ Contam Toxicol 89:263–268. https://doi.org/10.1007/s00128-012-0675-y

    Article  CAS  PubMed  Google Scholar 

  5. Sair AT, Khan ZA (2018) Prevalence of antibiotic and heavy metal resistance in Gram negative bacteria isolated from rivers in northern Pakistan. Water Environ J 32:51–57. https://doi.org/10.1111/wej.12290

    Article  CAS  Google Scholar 

  6. Nies DH (1999) Heavy metal-resistant bacteria as extremophiles: molecular physiology and biotechnological use of Rastolnia sp. CH34. Extremophiles 4:77–82. https://doi.org/10.1007/s007920050140

    Article  Google Scholar 

  7. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339. https://doi.org/10.1016/s0168-6445(03)00048-2

    Article  CAS  PubMed  Google Scholar 

  8. Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353. https://doi.org/10.1016/s0168-6445(03)00047-0

    Article  CAS  PubMed  Google Scholar 

  9. Rensing C, Fan B, Sharma R, Mitra B, Rosen BP (2000) CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci USA 97:652–656. https://doi.org/10.1073/pnas.97.2.652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hoogewerf AJ, Van Dyk LA, Buit TS, Roukema D, Resseguie E, Plaisier C, Le N, Heeringa L, Griend DAV (2015) Functional characterization of a cadmium resistance operon in ATCC12600: CadC does not function as a repressor. J Basic Microbiol 55:148–159. https://doi.org/10.1002/jobm.201400498

    Article  CAS  PubMed  Google Scholar 

  11. Zhang XX, Zhang T, Fang HHP (2009) Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol 82:397–414. https://doi.org/10.1007/s00253-008-1829-z

    Article  CAS  PubMed  Google Scholar 

  12. Bass L, Liebert CA, Lee MD, Summers AO, White DG, Thayer SG, Maurer JJ (1999) Incidence and characterization of integrons, genetic elements mediating multiple-drug resistance, in avian Escherichia coli. Antimicrob Agents Chemother 43:2925–2929. https://doi.org/10.1128/aac.43.12.2925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14:76–182. https://doi.org/10.1016/j.tim.2006.02.006

    Article  CAS  Google Scholar 

  14. Blanco P, Hernando-Amado S, Reales-Calderon JA, Corona F, Lira F, Alcalde-Rico M, Bernardini A, Sanchez MB, Martinez JL (2016) Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms 4:14–33. https://doi.org/10.3390/microorganisms4010014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Poole K, Krebes K, Mcnally C, Neshat S (1993) Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol 175:7363–7372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Poole K, Gotoh N, Tsujimoto H, Zhao Q, Wada A, Yamasaki T, Li XZ, Nishino T (1996) Overexpression of the mexC-mexD-oprJ efflux operon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa. Mol Microbiol 21:713–724. https://doi.org/10.1046/j.1365-2958.1996.281397.x

    Article  CAS  PubMed  Google Scholar 

  17. Kohler T, Pechere JC, Plesiat P (1999) Bacterial antibiotic efflux systems of medical importance. Cell Mol Life Sci 56:771–778. https://doi.org/10.1007/s000180050024

    Article  CAS  PubMed  Google Scholar 

  18. Mine T, Morita Y, Kataoka A, Mizushima T, Tsuchiya T (1999) Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa. Antimicrob Agents Chemother 43:415–417. https://doi.org/10.1128/aac.43.2.415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Begic S, Worobec EA (2008) The role of the Serratia marcescens SdeAB multidrug efflux pump and TolC homologue in fluoroquinolone resistance studied via gene-knockout mutagenesis. Microbiology 154:454–461. https://doi.org/10.1099/mic.0.2007/012427-0

    Article  CAS  PubMed  Google Scholar 

  20. Magnet S, Courvalin P, Lambert T (2001) Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob Agents Chemother 45:3375–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li XZ, Zhang L, Poole K (2000) Interplay between the MexA-MexB-OprM multidrug efflux system and the outer membrane barrier in the multiple antibiotic resistance of Pseudomonas aeruginosa. J Antimicrob Chemother 45(4):433–436. https://doi.org/10.1093/jac/45.4.433

    Article  CAS  PubMed  Google Scholar 

  22. Wang H, Su X, Su J, Zhu Y, Ding K (2022) Profiling the antibiotic resistome in soils between pristine and human-affected sites on the Tibetan Plateau. J Environ Sci 111:442–451. https://doi.org/10.1016/j.jes.2021.04.019

    Article  CAS  Google Scholar 

  23. Yewale PP, Lokhande KB, Sridhar A, Vaishnav A, Khan FA, Mandal A, Swamy KV, Jass J, Nawani N (2020) Molecular profiling of multidrug-resistant river water isolates: insights into resistance mechanism and potential inhibitors. Environ Sci Pollut Res 27:27279–27292. https://doi.org/10.1007/s11356-019-05738-2

    Article  CAS  Google Scholar 

  24. Tapia-Arreola AK, Ruiz-Garcia DA, Rodulfo H, Sharma A, De Donato M (2022) High frequency of antibiotic resistance genes (ARGs) in the Lerma River Basin, Mexico. Int J Environ Res Public Health 19(21):13988. https://doi.org/10.3390/ijerph192113988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Skariyachan S, Mahajanakatti AB, Grandhi NJ, Prasanna A, Sen B, Sharma N, Vasist KS, Narayanappa R (2015) Environmental monitoring of bacterial contamination and antibiotic resistance patterns of the fecal coliforms isolated from Cauvery River, a major drinking water source in Karnataka. India Environ Monit Assess 187:279. https://doi.org/10.1007/s10661-015-4488-4

    Article  CAS  PubMed  Google Scholar 

  26. Camiade M, Bodilis J, Chaftar N, Riah-Anglet W, Garderes J, Buquet S, Ribeiro AF, Pawlak B (2020) Antibiotic resistance patterns of Pseudomonas spp. isolated from faecal wastes in the environment and contaminated surface water. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiaa008

    Article  PubMed  Google Scholar 

  27. Nongkhlaw M, Kumar R, Acharya C, Joshi SR (2012) Occurrence of horizontal gene transfer of PIB-type ATPase genes among bacteria isolated from the uranium rich deposit of Domiasiat in North East India. PLoS one 7(10):e48199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chettri U, Joshi SR (2022) A first calibration of culturable bacterial diversity and their dual resistance to heavy metals and antibiotics along altitudinal zonation of the Teesta River. Arch Microbiol 204(5):1–15. https://doi.org/10.1007/s00203-022-02858-1

    Article  CAS  Google Scholar 

  29. Lim CK, Cooksey DA (1993) Characterization of chromosomal homologs of the plasmid-borne copper resistance operon of Pseudomonas syringae. J Bacteriol 175:4492–4498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aleem A, Isar J, Malik A (2003) Impact of long-term application of industrial wastewater on the emergence of resistance traits in Azotobacter chroococcum isolated from rhizospheric soil. Bioresour Technol 86(1):7–13. https://doi.org/10.1016/S0960-8524(02)00134-7

    Article  CAS  PubMed  Google Scholar 

  31. Tao R, Ying GG, Su HC, Zhou HW, Sidhu JPS (2010) Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China. Environ Pollut 158(6):2101–2109. https://doi.org/10.1016/j.envpol.2010.03.004

    Article  CAS  PubMed  Google Scholar 

  32. Krumperman PH (1983) Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl Environ Microbiol 46(1):165–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–4. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Martinez RJ, Wang Y, Raimondo MA, Coombs JM, Barkay T, Sobecky PA (2006) Horizontal gene transfer of PIB-type ATPases among bacteria isolated from radionuclide- and metal-contaminated subsurface soils. Appl Environ Microbiol 72:3111–3118. https://doi.org/10.1128/AEM.72.5.3111-3118.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Coombs JM, Barkay T (2004) Molecular evidence for the evolution of metal homeostasis genes by gene transfer in bacteria from the deep terrestrial subsurface. Appl Environ Microbiol 70:1698–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shylla L (2021) Ph.D. thesis. North Eastern Hill University, Shillong, Meghalaya, India

  37. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74(3):417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bhutiani R, Khanna DR, Kulkarni DB, Ruhela M (2016) Assessment of Ganga River ecosystem at Haridwar, Uttarakhand, India with reference to water quality indices. Appl Water Sci 6:107–113. https://doi.org/10.1007/s13201-014-0206-6

    Article  Google Scholar 

  39. Foster TJ (1983) Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria. Microbiol Rev 47:361–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mata MT, Baquero F, Perez-Diaz JC (2000) A multidrug efflux transporter in Listeria monocytogenes. FEMS Microbiol Lett 187:185–188. https://doi.org/10.1111/j.1574-6968.2000.tb09158.x

    Article  CAS  PubMed  Google Scholar 

  41. Summers AO, Wireman J, Vimy MJ, Lorscheider FL, Marshall B, Levy SB, Bennett S, Billard L (1993) Mercury released from dental silver fillings provokes an increase in mercury-resistant and antibiotic resistant bacteria in oral and intestinal floras of primates. Antimicrob Agents Chemother 37:825–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Perron K, Caille O, Rossier C, van Delden C, Dumas J, Kohler T (2004) CzcR-CzcS, a two-component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa. J Biol Chem 279(10):8761–8768. https://doi.org/10.1074/jbc.M312080200

    Article  CAS  PubMed  Google Scholar 

  43. Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199. https://doi.org/10.1007/bf01569902

    Article  CAS  PubMed  Google Scholar 

  44. Prestinaci F, Pezzotti P, Pantosti A (2015) Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 109(7):309–318

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. P T 40(4):277–283

    PubMed  PubMed Central  Google Scholar 

  46. Kotwani A, Joshi J, Kaloni D (2021) Pharmaceutical effluent: a critical link in the interconnected ecosystem promoting antimicrobial resistance. Environ Sci Pollut Res Int 28(25):32111–32124. https://doi.org/10.1007/s11356-021-14178-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abadi MSS, Gholipour A, Hadi N (2018) The highly conserved domain of RND multidrug efflux pumps in pathogenic Gram-negative bacteria. Cell Mol Biol 64(13):79–83. https://doi.org/10.14715/cmb/2018.64.13.15

    Article  Google Scholar 

  48. Trevors JT, Stratton GW, Gadd GM (1986) Cadmium transport, resistance, and toxicity in bacteria, algae, and fungi. Can J Microbiol 32:447–464. https://doi.org/10.1139/m86-085

    Article  CAS  PubMed  Google Scholar 

  49. Eliora ZR, Minz D, Finkelstein NP, Rosenberg N (1992) Interactions of bacteria with cadmium. Biodegredation 3:161–171. https://doi.org/10.1007/978-94-011-1672-5_4

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the research facilities provided by the Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, under DST-FIST and UGC-SAP programs and Department of Forest, Environment and Wildlife Management, Office of the Chief Conservator of Forest (T&HQ) cum CWLW, Govt of Sikkim, India for issuing research permit.

Funding

The study was supported by the financial support received from Government of India through Department of Science and Technology-Fund for Improvement of Science and Technology, Government of India [SR/FST/LSI-666/2016(C)] and University Grants Commission-Special Assistance Programme [F.4-7/2016/DRS-1 (SAP-II)] to the parent department.

Author information

Authors and Affiliations

Authors

Contributions

SRJ, UC and MN designed the work. UC executed the experiments and collected data. MN, UC and SRJ analyzed the data. UC and MN wrote the draft manuscript.

Corresponding author

Correspondence to Santa R. Joshi.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Ethical Approval

The study did not require any ethical clearances to conduct the study. Necessary permission to carry out the study as per the existing regulations was obtained from Department of Forest, Environment and Wildlife Management, Office of the Chief Conservator of Forest (T&HQ) cum CWLW, Govt of Sikkim, India (Letter No. F.No: 78/GOS/FEWMD/BDR/PCCF/Secy 116).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chettri, U., Nongkhlaw, M. & Joshi, S.R. Molecular Evidence for Occurrence of Heavy Metal and Antibiotic Resistance Genes Among Predominant Metal Tolerant Pseudomonas sp. and Serratia sp. Prevalent in the Teesta River. Curr Microbiol 80, 226 (2023). https://doi.org/10.1007/s00284-023-03334-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03334-9

Navigation