Skip to main content

Advertisement

Log in

Novel Phocaeicola Strain Ameliorates Dextran Sulfate Sodium-induced Colitis in Mice

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Previously, we isolated a novel Phocaeicola strain, Phocaeicola faecalis FXJYN30E22, from the feces of a healthy human from China. Metagenomic analysis revealed that the distribution of FXJYN30E22 differed in the intestinal tract of different hosts. We aimed to determine whether FXJYN30E22 protects against ulcerative colitis by employing a mouse model. In this study, dextran sulfate sodium was used to construct the UC model. The disease activity index, colon length, body weight changes, and histological scores were used as the pathological indicators to assess the anti-inflammatory effect of P. faecalis FXJYN30E22. Further, cytokine levels, tight junction mRNA expression levels, and short-chain fatty acid (SCFA) concentrations were also analyzed. Phocaeicola faecalis FXJYN30E22 could reduce the DSS-induced increase in DAI score, and enhance the colon length and body weight. Phocaeicola faecalis FXJYN30E22 could enhance TJ protein concentration and modulate the level of cytokines to reach levels close to those of the control group. FXJYN30E22 could also upregulate the concentrations of SCFA, which include acetate and butyrate. Based on the correlation analysis, four factors, including interleukin (IL)-6, IL-10, IL-1β levels, and propionate concentration, were related to the protective roles of FXJYN30E22 in UC mice to different degrees. According to an analysis of the genomic information, the potential protective effects of strain FXJYN30E22 may be associated with the secretion of SCFA by specific genes. These findings suggest that oral P. faecalis FXJYN30E22 could help maintain the epithelial barrier by regulating cytokine levels and secreting SCFA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Torres J, Billioud V, Sachar DB, Peyrin-Biroulet L, Colombel JF (2012) Ulcerative colitis as a progressive disease: the forgotten evidence. Inflamm Bowel Dis 18(7):1356–1363. https://doi.org/10.1002/ibd.22839

    Article  PubMed  Google Scholar 

  2. Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L, Colombel JF (2017) Ulcerative colitis. Lancet 389(10080):1756–1770. https://doi.org/10.1016/s0140-6736(16)32126-2

    Article  PubMed  Google Scholar 

  3. Sehgal P, Colombel JF, Aboubakr A, Narula N (2018) Systematic review: safety of mesalazine in ulcerative colitis. Aliment Pharmacol Ther 47(12):1597–1609. https://doi.org/10.1111/apt.14688

    Article  CAS  PubMed  Google Scholar 

  4. Green JR, Lobo AJ, Holdsworth CD, Leicester RJ, Gibson JA, Kerr GD, Hodgson HJ, Parkins KJ, Taylor MD, Abacus Investigator Group (1998) Balsalazide is more effective and better tolerated than mesalamine in the treatment of acute ulcerative colitis. Gastroenterology 114(1):15–22. https://doi.org/10.1016/s0016-5085(98)70627-4

    Article  CAS  PubMed  Google Scholar 

  5. Yang Y, Li L, Xu C, Wang Y, Wang Z, Chen M, Jiang Z, Pan J, Yang C, Li X, Song K, Yan J, Xie W, Wu X, Chen Z, Yuan Y, Zheng S, Yan J, Huang J, Qiu F (2020) Cross-talk between the gut microbiota and monocyte-like macrophages mediates an inflammatory response to promote colitis-associated tumourigenesis. Gut 70(8):1495–1506. https://doi.org/10.1136/gutjnl-2020-320777

    Article  CAS  Google Scholar 

  6. Yu AI, Zhao L, Eaton KA, Ho S, Chen J, Poe S, Becker J, Gonzalez A, McKinstry D, Hasso M, Mendoza-Castrejon J, Whitfield J, Koumpouras C, Schloss PD, Martens EC, Chen GY (2020) Gut microbiota modulate CD8 T cell responses to influence colitis-associated tumorigenesis. Cell Rep 31(1):107471. https://doi.org/10.1016/j.celrep.2020.03.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fan L, Qi Y, Qu S, Chen X, Li A, Hendi M, Xu C, Wang L, Hou T, Si J, Chen S (2021) B. adolescentis ameliorates chronic colitis by regulating Treg/Th2 response and gut microbiota remodeling. Gut microbes 13(1):1–17. https://doi.org/10.1080/19490976.2020.1826746

    Article  CAS  PubMed  Google Scholar 

  8. Tamaki H, Nakase H, Inoue S, Kawanami C, Itani T, Ohana M, Kusaka T, Uose S, Hisatsune H, Tojo M, Noda T, Arasawa S, Izuta M, Kubo A, Ogawa C, Matsunaka T, Shibatouge M (2016) Efficacy of probiotic treatment with Bifidobacterium longum 536 for induction of remission in active ulcerative colitis: a randomized, double-blinded, placebo-controlled multicenter trial. Dig Endosc 28(1):67–74. https://doi.org/10.1111/den.12553

    Article  PubMed  Google Scholar 

  9. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638. https://doi.org/10.1126/science.1110591

    Article  PubMed  PubMed Central  Google Scholar 

  10. García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T, Kyrpides NC, Hahnke RL, Göker M (2019) Analysis of 1,000 type-strain genomes improves taxonomic classification of Bacteroidetes. Front Microbiol 10:2083. https://doi.org/10.3389/fmicb.2019.02083

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chang YC, Ching YH, Chiu CC, Liu JY, Hung SW, Huang WC, Huang YT, Chuang HL (2017) TLR2 and interleukin-10 are involved in Bacteroides fragilis-mediated prevention of DSS-induced colitis in gnotobiotic mice. PLoS ONE 12(7):e0180025. https://doi.org/10.1371/journal.pone.0180025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kverka M, Zakostelska Z, Klimesova K, Sokol D, Hudcovic T, Hrncir T, Rossmann P, Mrazek J, Kopecny J, Verdu EF, Tlaskalova-Hogenova H (2011) Oral administration of Parabacteroides distasonis antigens attenuates experimental murine colitis through modulation of immunity and microbiota composition. Clin Exp Immunol 163(2):250–259. https://doi.org/10.1111/j.1365-2249.2010.04286.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iljazovic A, Roy U, Gálvez EJC, Lesker TR, Zhao B, Gronow A, Amend L, Will SE, Hofmann JD, Pils MC, Schmidt-Hohagen K, Neumann-Schaal M, Strowig T (2021) Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunol 14(1):113–124. https://doi.org/10.1038/s41385-020-0296-4

    Article  CAS  PubMed  Google Scholar 

  14. Al Masalma M, Raoult D, Roux V (2009) Phocaeicola abscessus gen. nov., sp. nov., an anaerobic bacterium isolated from a human brain abscess sample. Int J Syst Evol Microbiol 59(9):2232–2237. https://doi.org/10.1099/ijs.0.007823-0

    Article  CAS  PubMed  Google Scholar 

  15. Oren A, Garrity GM (2016) List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 66(11):4299–4305

    Article  PubMed  Google Scholar 

  16. Waidmann M, Bechtold O, Frick JS, Lehr HA, Schubert S, Dobrindt U, Loeffler J, Bohn E, Autenrieth IB (2003) Bacteroides vulgatus protects against Escherichia coli-induced colitis in gnotobiotic interleukin-2-deficient mice. Gastroenterology 125(1):162–177. https://doi.org/10.1016/s0016-5085(03)00672-3

    Article  PubMed  Google Scholar 

  17. Frick JS, Fink K, Kahl F, Niemiec MJ, Quitadamo M, Schenk K, Autenrieth IB (2007) Identification of commensal bacterial strains that modulate Yersinia enterocolitica and dextran sodium sulfate-induced inflammatory responses: implications for the development of probiotics. Infect Immun 75(7):3490–3497. https://doi.org/10.1128/iai.00119-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Petrov VA, Saltykova IV, Zhukova IA, Alifirova VM, Zhukova NG, Dorofeeva YB, Tyakht AV, Kovarsky BA, Alekseev DG, Kostryukova ES, Mironova YS, Izhboldina OP, Nikitina MA, Perevozchikova TV, Fait EA, Babenko VV, Vakhitova MT, Govorun VM, Sazonov AE (2017) Analysis of gut microbiota in patients with Parkinson’s disease. Bull Exp Biol Med 162(6):734–737. https://doi.org/10.1007/s10517-017-3700-7

    Article  CAS  PubMed  Google Scholar 

  19. Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, Jia W, Cai S, Zhao L (2012) Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J 6(2):320–329. https://doi.org/10.1038/ismej.2011.109

    Article  CAS  PubMed  Google Scholar 

  20. Wang C, Li S, Zhang Z, Yu Z, Yu L, Tian F, Chen W, Zhai Q (2021) Phocaeicola faecalis sp. nov., a strictly anaerobic bacterial strain adapted to the human gut ecosystem. Antonie Van Leeuwenhoek 114(8):1225–1235. https://doi.org/10.1007/s10482-021-01595-7

    Article  CAS  PubMed  Google Scholar 

  21. Tan H, Zhao J, Zhang H, Zhai Q, Chen W (2019) Novel strains of Bacteroides fragilis and Bacteroides ovatus alleviate the LPS-induced inflammation in mice. Appl Microbiol Biotechnol 103(5):2353–2365. https://doi.org/10.1007/s00253-019-09617-1

    Article  CAS  PubMed  Google Scholar 

  22. McCall C, Xagoraraki I (2018) Comparative study of sequence aligners for detecting antibiotic resistance in bacterial metagenomes. Lett Appl Microbiol 66(3):162–168. https://doi.org/10.1111/lam.12842

    Article  CAS  PubMed  Google Scholar 

  23. Chen Y, Jin Y, Stanton C, Paul Ross R, Zhao J, Zhang H, Yang B, Chen W (2021) Alleviation effects of Bifidobacterium breve on DSS-induced colitis depends on intestinal tract barrier maintenance and gut microbiota modulation. Eur J Nutr 60(1):369–387. https://doi.org/10.1007/s00394-020-02252-x

    Article  CAS  PubMed  Google Scholar 

  24. Mennigen R, Nolte K, Rijcken E, Utech M, Loeffler B, Senninger N, Bruewer M (2009) Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol 296(5):G1140-1149. https://doi.org/10.1152/ajpgi.90534.2008

    Article  CAS  PubMed  Google Scholar 

  25. Wang J, Chen H, Yang B, Gu Z, Zhang H, Chen W, Chen YQ (2016) Lactobacillus plantarum ZS2058 produces CLA to ameliorate DSS-induced acute colitis in mice. RSC Adv 6(18):14457–14464

    Article  CAS  Google Scholar 

  26. Shinde T, Perera AP, Vemuri R, Gondalia SV, Beale DJ, Karpe AV, Shastri S, Basheer W, Southam B, Eri R, Stanley R (2020) Synbiotic supplementation with prebiotic green banana resistant starch and probiotic Bacillus coagulans spores ameliorates gut inflammation in mouse model of inflammatory bowel diseases. Eur J Nutr 59(8):3669–3689. https://doi.org/10.1007/s00394-020-02200-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu Q, Li X, Wang E, He Y, Yin B, Fang D, Wang G, Zhao J, Zhang H, Chen W (2016) A cellular model for screening of Lactobacilli that can enhance tight junctions. RSC Adv 6(113):111812–111821

    Article  CAS  Google Scholar 

  28. Wang L, Hu L, Xu Q, Jiang T, Fang S, Wang G, Zhao J, Zhang H, Chen W (2017) Bifidobacteria exert species-specific effects on constipation in BALB/c mice. Food Funct 8(10):3587–3600. https://doi.org/10.1039/c6fo01641c

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y, Sheng Y, Pan Q, Xue Y, Yu L, Tian F, Zhao J, Zhang H, Zhai Q, Chen W (2020) Identification of the key physiological characteristics of Lactobacillus plantarum strains for ulcerative colitis alleviation. Food Funct 11(2):1279–1291. https://doi.org/10.1039/c9fo02935d

    Article  CAS  PubMed  Google Scholar 

  30. Tan H, Wang C, Zhang Q, Tang X, Zhao J, Zhang H, Zhai Q, Chen W (2020) Preliminary safety assessment of a new Bacteroides fragilis isolate. Food Chem Toxicol 135:110934. https://doi.org/10.1016/j.fct.2019.110934

    Article  CAS  PubMed  Google Scholar 

  31. Cousin FJ, Lynch SM, Harris HM, McCann A, Lynch DB, Neville BA, Irisawa T, Okada S, Endo A, O’Toole PW (2015) Detection and genomic characterization of motility in Lactobacillus curvatus: confirmation of motility in a species outside the Lactobacillus salivarius clade. Appl Environ Microbiol 81(4):1297–1308. https://doi.org/10.1128/aem.03594-14

    Article  PubMed  PubMed Central  Google Scholar 

  32. Robertson KP, Smith CJ, Gough AM, Rocha ER (2006) Characterization of Bacteroides fragilis hemolysins and regulation and synergistic interactions of HlyA and HlyB. Infect Immun 74(4):2304–2316. https://doi.org/10.1128/iai.74.4.2304-2316.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Ye X, Treuting P, Siewe L, Roers A, Henderson WR Jr, Muller W, Rudensky AY (2008) Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28(4):546–558. https://doi.org/10.1016/j.immuni.2008.02.017

    Article  CAS  PubMed  Google Scholar 

  34. Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453(7195):620–625. https://doi.org/10.1038/nature07008

    Article  CAS  PubMed  Google Scholar 

  35. Ramakrishna C, Kujawski M, Chu H, Li L, Mazmanian SK, Cantin EM (2019) Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis. Nat Commun 10(1):2153. https://doi.org/10.1038/s41467-019-09884-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang C, Zhao Y, Jiang J, Yu L, Tian F, Zhao J, Zhang H, Chen W, Zhai Q (2021) Identification of the key characteristics of Bifidobacterium longum strains for the alleviation of ulcerative colitis. Food Funct 12(8):3476–3492. https://doi.org/10.1039/d1fo00017a

    Article  CAS  PubMed  Google Scholar 

  37. Lee SM, Donaldson GP, Mikulski Z, Boyajian S, Ley K, Mazmanian SK (2013) Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501(7467):426–429. https://doi.org/10.1038/nature12447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Feng J, Qian Y, Zhou Z, Ertmer S, Vivas EI, Lan F, Hamilton JJ, Rey FE, Anantharaman K, Venturelli OS (2022) Polysaccharide utilization loci in Bacteroides determine population fitness and community-level interactions. Cell Host Microbe 30(2):200-215.e212. https://doi.org/10.1016/j.chom.2021.12.006

    Article  CAS  PubMed  Google Scholar 

  39. Pereira GV, Abdel-Hamid AM, Dutta S, D’Alessandro-Gabazza CN, Wefers D, Farris JA, Bajaj S, Wawrzak Z, Atomi H, Mackie RI, Gabazza EC, Shukla D, Koropatkin NM, Cann I (2021) Degradation of complex arabinoxylans by human colonic Bacteroidetes. Nat Commun 12(1):459. https://doi.org/10.1038/s41467-020-20737-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cuív PÓ, De Wouters T, Giri R, Mondot S, Smith WJ, Blottière HM, Begun J, Morrison M (2017) The gut bacterium and pathobiont Bacteroides vulgatus activates NF-κB in a human gut epithelial cell line in a strain and growth phase dependent manner. Anaerobe 47:209–217

    Article  Google Scholar 

  41. Moeller JB, Leonardi I, Schlosser A, Flamar AL, Bessman NJ, Putzel GG, Thomsen T, Hammond M, Jepsen CS, Skjødt K, Füchtbauer EM, Farber DL, Sorensen GL, Iliev ID, Holmskov U, Artis D (2019) Modulation of the fungal mycobiome is regulated by the chitin-binding receptor FIBCD1. J Exp Med 216(12):2689–2700. https://doi.org/10.1084/jem.20182244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang F, Li Y, Yang C, Mu Y, Wang Y, Zhang W, Yang Y, Chen C, Song S, Shen Z, Wang W, Li J, Zhai J, Guo K, Sun R, Yu L, Wang M (2019) Mannan-binding lectin suppresses peptidoglycan-induced TLR2 activation and inflammatory responses. Mediat Inflamm 2019:1349784. https://doi.org/10.1155/2019/1349784

    Article  CAS  Google Scholar 

  43. Fazekas E, Kandra L, Gyémánt G (2012) Model for β-1,6-N-acetylglucosamine oligomer hydrolysis catalysed by DispersinB, a biofilm degrading enzyme. Carbohydr Res 363:7–13. https://doi.org/10.1016/j.carres.2012.09.016

    Article  CAS  PubMed  Google Scholar 

  44. Hald S, Schioldan AG, Moore ME, Dige A, Lærke HN, Agnholt J, Bach Knudsen KE, Hermansen K, Marco ML, Gregersen S, Dahlerup JF (2016) Effects of arabinoxylan and resistant starch on intestinal microbiota and short-chain fatty acids in subjects with metabolic syndrome: a randomised crossover study. PLoS ONE 11(7):e0159223. https://doi.org/10.1371/journal.pone.0159223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H, Hattori M, Ohno H (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469(7331):543–547. https://doi.org/10.1038/nature09646

    Article  CAS  PubMed  Google Scholar 

  46. Sengupta S, Muir JG, Gibson PR (2006) Does butyrate protect from colorectal cancer? J Gastroenterol Hepatol 21(1 Pt 2):209–218. https://doi.org/10.1111/j.1440-1746.2006.04213.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China Key Program (31772090, 32001665, 31820103010, U1903205), Natural Science Foundation of Jiangsu Province (BE2021623), the Key Scientific and Technological Research Projects (2018AB010), the Major Project of Wuxi Science and Technology Bureau (Y20212007), and the Wuxi Double-Hundred Talent Fund Project (BJ2020082) and the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province.

Author information

Authors and Affiliations

Authors

Contributions

ZS: Data curation; writing—original draft; conceived and designed the experiments. XJ: Data curation; writing—original draft. BW and FT: Data curation. HZ: Data curation. LY: Supervision; writing—review & editing; conceived and designed the experiments.

Corresponding authors

Correspondence to Heng Zhang or Leilei Yu.

Ethics declarations

Conflict of interest

The author(s) declare that they have no conflict of interest.

Ethical Approval

The study protocol was approved by the Committee of Ethics of Jiangnan University, China (JN. No. 20201230c0400203[390]). All of the required procedures involving the use and care of animals for experiments were conducted according to the guidelines of the European Community (Directive 2010/63/EU).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 23 kb)

Supplementary file2 (DOC 30 kb)

Supplementary file3 (DOC 43 kb)

284_2022_3054_MOESM4_ESM.tif

Supplementary file4 (TIF 2019 kb) Fig. S1 Effect of P. faecalis FXJYN30E22 on the concentration of SCFA in cecal contents. Note: Statistical significance among different groups compared with the DSS group was determined.

284_2022_3054_MOESM5_ESM.tif

Supplementary file5 (TIF 4483 kb) Fig. S2 Morphology of P. faecalis FXJYN30E22 and B. fragilis NCTC9343 (A) hemolysis of B. fragilis NCTC9343; (B) hemolysis of P. faecalis FXJYN30E22; (C) motility of B. fragilis NCTC9343; and (D) motility of P. faecalis FXJYN30E22.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Jiang, X., Wang, B. et al. Novel Phocaeicola Strain Ameliorates Dextran Sulfate Sodium-induced Colitis in Mice. Curr Microbiol 79, 393 (2022). https://doi.org/10.1007/s00284-022-03054-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-03054-6

Navigation