Skip to main content

Advertisement

Log in

Fungicide Resistance in Fusarium graminearum Species Complex

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Fusariosis affects cereal grain crops worldwide and is responsible for devastating crops, reducing grain quality and yield, and producing strong mycotoxins. Benzimidazoles and triazoles were recommended to combat fusariosis; however, there were reports of resistance, making it necessary to reflect on the reasons for this occurrence. The purpose of this review was to evaluate the fusariosis resistance to the main agricultural fungicides, to observe whether this resistance can cause changes in the production of mycotoxins, and to verify the influence of resistance on the cereal grain production chain. Scientific articles were selected from the ScienceDirect, Scopus, and Pubmed databases, published at maximum 10 years ago and covering the main fungicide classes that combat phytopathogenesis and mycotoxin production. A high occurrence of resistance to carbendazim was found, while few reports of resistance to triazoles are available. The effectiveness of strobilurins is doubtful, due to an increase of mycotoxins linked to it. It is possible to conclude that the large-scale use of fungicides can select resistant strains that will contribute to an increase in the production of mycotoxins and harm sectors of the world economy, not only the agriculture, but also sanitation and foreign trade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Parfrey LW, Lahr DJG, Knoll AH, Katz LA (2011) Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci 108(33):13624–13629. https://doi.org/10.1073/pnas.1110633108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Coque JJR, Álvarez-Pérez JM, Cobos R, González-García S, Ibánez AM, Galán AD, Calvo-Peña C (2020) Advances in the control of phytopathogenic fungi that infect crops through their root system. Adv Appl Microbiol 111:123–170. https://doi.org/10.1016/bs.aambs.2020.01.003

    Article  CAS  PubMed  Google Scholar 

  3. Wang L, Zhang Y, Wang L, Liu F, Cao L, Yang J, Qiao C, Ye Y (2014) Benzofurazan derivatives as antifungal agents against phytopathogenic fungi. Eur J Med Chem 80:535–542. https://doi.org/10.1016/j.ejmech.2014.04.058

    Article  CAS  PubMed  Google Scholar 

  4. Marin-Felix Y, Groenewald JZ, Cai L, Chen Q, Marincowitz S, Barnes I, Bensch K, Braun U, Camporesi E, Damm U, de Beer ZW, Dissanayake A, Edwards J, Giraldo A, Hernandez-Restrepo M, Hyde KD, Jayawardena RS, Lombard L, Luangsa-ard J, McTaggart AR, Rossman AY, Sandoval-Denis M, Shen M, Shivas RG, Tan YP, van der Linde EJ, Wingfield MJ, Wood AR, Zhang JQ, Zhang Y, Crous PW (2017) Genera of phytopathogenic fungi: GOPHY 1. Stud Mycol 86:99–216

    Article  CAS  Google Scholar 

  5. Kuhnem PR, Wardb TJ, Silvac CN, Spoltia P, Ciliatoc ML, Tessmannc DJ, Del Ponte EM (2016) Composition and toxigenic potential of the Fusarium graminearum species complex from maize ears, stalks and stubble in Brazil. Plant Pathol 65:1185–1191. https://doi.org/10.1111/ppa.12497

    Article  CAS  Google Scholar 

  6. Taheri P (2018) Cereal diseases caused by Fusarium graminearum: from biology of the pathogen to oxidative burst-related host defense responses. Eur J Plant Pathol 152:1–20. https://doi.org/10.1007/s10658-018-1471-2

    Article  CAS  Google Scholar 

  7. Foroud NA, Baines D, Gagkaeva TY, Thakor N, Badea A, Steiner B, Burstmayr M, Bürstmayr H (2019) Trichothecenes in cereal grains—an update. Toxins 11:1–48. https://doi.org/10.3390/toxins11110634

    Article  CAS  Google Scholar 

  8. Schöneberg T, Jenny E, Wettstein FE, Bucheli TD, Mascher F, Bertossa M, Musa T, Keith S, Gräfenhan T, Keller B, Vogelgsang S (2018) Occurrence of Fusarium species and mycotoxins in Swiss oats—impact of cropping factors. Eur J Agron 92:123–132. https://doi.org/10.1016/j.eja.2017.09.004

    Article  CAS  Google Scholar 

  9. Mendes GRL, Del Ponte EM, Feltrin AC, Badiale-Furlong E, Oliveira A (2018) Common resistance to Fusarium head blight in Brazilian wheat cultivars. Sci Agric 75:426–431. https://doi.org/10.1590/1678-992X-2016-0407

    Article  CAS  Google Scholar 

  10. Brown NA, Urban M, Van De Meene AML, Hammond-Kosack KE (2010) The infection biology of Fusarium graminearum: defining the pathways of spikelet to spikelet colonisation in wheat ears. Fungal Biol 114:555–571. https://doi.org/10.1016/j.funbio.2010.04.006

    Article  PubMed  Google Scholar 

  11. Figueroa M, Hammond-Kosack KE, Solomon PS (2018) A review of wheat diseases—a field perspective. Mol Plant Pathol 19:1523–1536. https://doi.org/10.1111/mpp.12618

    Article  PubMed  Google Scholar 

  12. Chen H, Wu Q, Zhang G, Wu J, Zhu F, Yang H, Zhuang Y (2019) Carbendazim-resistance of Giberella zeae associated with fusarium head blight and its management in Jiangsu Province, China. Crop Prot 124:1–7. https://doi.org/10.1016/j.cropro.2019.104866

    Article  CAS  Google Scholar 

  13. Bolanos-Carriel C, Wegulo SN, Baenziger PS, Eskridge KM, Funnel-Harris D, Mcmaster N, Schmale DG, Hallen-Addams HE (2020) Tri5 gene expression analysis during postharvest storage of wheat grain from field plots treated with a triazole and a strobilurin fungicide. Can J Plant Pathol 42:1–14. https://doi.org/10.1080/07060661.2019.1700169

    Article  CAS  Google Scholar 

  14. Sevastos A, Markoglou A, Labrou NE, Flouri F, Malandrakis A (2016) Molecular characterization, fitness and mycotoxin production of Fusarium graminearum laboratory strains resistant to benzimidazoles. Pestic Biochem Physiol 128:1–9. https://doi.org/10.1016/j.pestbp.2015.10.004

    Article  CAS  PubMed  Google Scholar 

  15. Yerkovich N, Cantoro R, Palazzini JM, Torres A, Chulze SN (2020) Fusarium head blight in Argentina: Pathogen aggressiveness, triazole tolerance and biocontrol-cultivar combined strategy to reduce disease and deoxynivalenol in wheat. Crop Prot 137:1–8. https://doi.org/10.1016/j.cropro.2020.105300

    Article  CAS  Google Scholar 

  16. Castanãres E, Dinolfo MI, Del Ponte EM, Pan D, Stenglein SA (2015) Species composition and genetic structure of Fusarium graminearum species complex populations affecting the main barley growing regions of South America. Plant Pathol 65:930–939. https://doi.org/10.1111/ppa.12470

    Article  CAS  Google Scholar 

  17. Vaughan M, Backhouse D, Del Ponte EM (2016) Climate change impacts on the ecology of Fusarium graminearum species complex and susceptibility of wheat to Fusarium head blight: a review. World Mycotoxin J 9:685–700. https://doi.org/10.3920/WMJ2016.2053

    Article  Google Scholar 

  18. Yli-Mattila T (2010) Ecology and evolution of toxigenic Fusarium species in cereals in northern Europe and Asia. J Plant Pathol 92:7–18. https://doi.org/10.4454/jpp.v92i1.10

    Article  Google Scholar 

  19. Spolti P, Barros NC, Gomes LB, Santos J, Del Ponte EM (2012) Phenotypic and pathogenic traits of two species of the Fusarium graminearum complex possessing either 15-ADON or NIV genotype. Eur J Plant Pathol 133:621–629. https://doi.org/10.1007/s10658-012-9940-5

    Article  Google Scholar 

  20. Gale LR, Harrison SA, Ward TJ, O’Donnell K, Milus EA, Gale SW, Kistler HC (2011) Nivalenol-producing isolates of Fusarium graminearum and F. asiaticum are prevalent on wheat in southern Louisiana. Phytopathology 101:124–134. https://doi.org/10.1094/PHYTO-03-10-0067

    Article  CAS  PubMed  Google Scholar 

  21. Boutigny AL, Ward TJ, Van Coller GJ, Flett B, Lamprecht SC, O’Donnell K, Viljoen A (2011) Analysis of Fusarium graminearum species complex from wheat, barley and maize in South Africa provides evidence of species-specific diferences in host preference. Fungal Genet Biol 48:914–920. https://doi.org/10.1016/j.fgb.2011.05.005

    Article  CAS  PubMed  Google Scholar 

  22. Lee TVD, Zhang H, Diepeningen AV, Waalwijk C (2015) Biogeography of Fusarium graminearum species complex and chemotypes: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 32:453–460. https://doi.org/10.1080/19440049.2014.984244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fernández-Ortuño D, Loza-Reyes E, Atkins SL, Fraaije BA (2010) The CYP51C gene, a reliable marker to resolve interspecific phylogenetic relationships within the Fusarium species complex and a novel target for species-specific PCR. Int J Food Microbiol 144:301–309. https://doi.org/10.1016/j.ijfoodmicro.2010.10.013

    Article  CAS  PubMed  Google Scholar 

  24. Del Ponte EM, Spolti P, Ward TJ, Gomes LB, Nicolli CP, Kuhnem PR, Silva CN, Tessmann DJ (2015) Regional and field-specific factors affect the composition of Fusarium head blight pathogens in subtropical no-till wheat agroecosystem of Brazil. Phytopathology 105:246–254. https://doi.org/10.1094/phyto-04-14-0102-r

    Article  PubMed  Google Scholar 

  25. Becher R, Miedaner T, Wirsel SGR (2013) Biology, diversity and management of FHB-causing Fusarium species in small-grain cereals. The Mycota XI, Agricultural Applications, Second Edition, Chapter: 8. Springer, Berlin, pp 199–241

    Google Scholar 

  26. Dong F, Xu J, Zhang X, Wang S, Xing Y, Mokoena MP, Olaniran AO, Shi J (2020) Gramineous weeds near paddy fields are alternative hosts for the Fusarium graminearum species complex that causes Fusarium head blight in rice. Plant Pathol 69:433–441. https://doi.org/10.1111/ppa.13143

    Article  CAS  Google Scholar 

  27. Alconada TM, Moure MC, Ortega LM (2019) Fusarium infection in wheat, aggressiveness and changes in grain quality: a review. Vegetos 32:441–449

    Article  Google Scholar 

  28. Kheiri A, Jorf SAM, Malihipour A (2019) Infection process and wheat response to Fusarium head blight caused by Fusarium graminearum. Eur J Plant Pathol 153:489–502. https://doi.org/10.1007/s10658-018-1576-7

    Article  Google Scholar 

  29. Machado FJ, Nicolli CP, Moller PA, Arruda R, Ward TJ, Del Ponte EM (2017) Differential triazole sensitivity among members of the Fusarium graminearum species complex infecting barley grains in Brazil. Trop Plant Pathol 42:197–202. https://doi.org/10.1007/s40858-017-0158-0

    Article  Google Scholar 

  30. Cowger C, Arellano C (2013) Fusarium graminearum infection and deoxynivalenol concentrations during development of wheat spikes. Phytopathology 103:460–471. https://doi.org/10.1094/PHYTO-03-12-0054-R

    Article  CAS  PubMed  Google Scholar 

  31. Siou D, Gélisse S, Laval V, Repinçay C, Canalѐs R, Suffert F, Lannou C (2013) Effect of wheat spike infection timing on fusarium head blight development and mycotoxin accumulation. Plant Pathol 63:390–399. https://doi.org/10.1111/ppa.12106

    Article  CAS  Google Scholar 

  32. D’angelo DL, Bradley CA, Ames KA, Willyerd KT, Madden LV, Paul PA (2014) Efficacy of fungicide applications during and after anthesis against Fusarium head blight and deoxynivalenol in soft red winter wheat. Plant Dis 98:1387–1397. https://doi.org/10.1094/PDIS-01-14-0091-RE

    Article  CAS  PubMed  Google Scholar 

  33. Gaurilčikienė I, Mankevičienė A, Supronienė S (2011) The effect of fungicides on rye and triticale grain contamination with Fusarium fungi and mycotoxins. Zemdirbyste 98:19–26

    Google Scholar 

  34. Feksa HR, Couto HTZ, Garozi R, Almeida JL, Gardiano CG, Tessmann DJ (2019) Pre-and postinfection application of strobilurin-triazole premixes and single fungicides for control of fusarium head blight and deoxynivalenol mycotoxin in wheat. Crop Protect 117:128–134. https://doi.org/10.1016/j.cropro.2018.12.003

    Article  CAS  Google Scholar 

  35. Price CL, Parker JE, Warrilow AGS, Kelly DE, Kelly SL (2015) Azole fungicides—understanding resistance mechanisms in agricultural fungal pathogens. Pest Manag Sci 71:1054–1058. https://doi.org/10.1002/ps.4029

    Article  CAS  PubMed  Google Scholar 

  36. Duan Y, Lu F, Zhou Z, Zhao H, Zhang J, Mao Y, Li M, Wang J, Zhou M (2020) Quinone outside inhibitors affect DON biosynthesis, mitochondrial structure and toxisome formation in Fusarium graminearum. J Hazard Mater 398:1–17. https://doi.org/10.1016/j.jhazmat.2020.122908

    Article  CAS  Google Scholar 

  37. Spolti P, Del Ponte EM, Dong Y, Cummings JA, Bergstrom GC (2014) Triazole sensitivity in a contemporary population of Fusarium graminearum from New York wheat and competitiveness of a tebuconazole-resistant isolate. Plant Dis 98:607–613. https://doi.org/10.1094/pdis-10-13-1051-re

    Article  CAS  PubMed  Google Scholar 

  38. Spolti P, Guerra DS, Badiale-Furlong EB, Del Ponte EM (2013) Single and sequential applications of metconazole alone or in mixture with pyraclostrobin to improve Fusarium head blight control and wheat yield in Brazil. Tropic Plant Pathol 38:085–096. https://doi.org/10.1590/S1982-56762013000200001

    Article  Google Scholar 

  39. Becher R, Hettwer U, Karlovsky P, Deising HB, Wirsel SGR (2010) Adaptation of Fusarium graminearum to tebuconazole yielded descendants diverging for levels of fitness, fungicide resistance, virulence, and mycotoxin production. Phytopathology 100:444–453. https://doi.org/10.1094/PHYTO-100-5-0444

    Article  CAS  PubMed  Google Scholar 

  40. Marques LN, Pizzutti IR, Balardin RS, Dos Santos ID, Dias JV, Stefanello MT, Serafini PT (2017) Occurrence of mycotoxins in wheat grains exposed to fungicides on fusarium head blight control in southern Brazil. J Environ Sci Health B 52:244–250. https://doi.org/10.1080/03601234.2016.1270682

    Article  CAS  PubMed  Google Scholar 

  41. Duan Y, Tao X, Zhao H, Xiao X, Li M, Wang JX, Zhou M (2018) Activity of demethylation inhibitor fungicide metconazole on Chinese Fusarium graminearum species complex and its application in carbendazim-resistance management of Fusarium head blight in wheat. Plant Dis 103:929–937. https://doi.org/10.1094/PDIS-09-18-1592-RE

    Article  Google Scholar 

  42. Nicolli CP, Machado FJ, Spolti P, Del Ponte EM (2018) Fitness traits of deoxynivalenol and nivalenol-producing Fusarium graminearum species complex strains from wheat. Plant Dis 102:1341–1347. https://doi.org/10.1094/PDIS-12-17-1943-RE

    Article  CAS  PubMed  Google Scholar 

  43. Wegulo SN, Bockus WW, Hernandez Nopsa J, De Wolf ED, Eskridge KM, Peiris KHS, Dowell FE (2011) Effects of integrating cultivar resistance and fungicide application on Fusarium head blight and deoxynivalenol in winter wheat. Plant Dis 95:554–560. https://doi.org/10.1094/PDIS-07-10-0495

    Article  PubMed  Google Scholar 

  44. Avozani A, Reis EM, Tonin RB (2014) In vitro sensitivity reduction of Fusarium graminearum to DMI and QoI fungicides. Summa Phytopathol 40:358–364. https://doi.org/10.1590/0100-5405/1970

    Article  Google Scholar 

  45. Mesterházy Á, Tóth B, Varga M, Bartók T, Szabó-Hevér Á, Farády L, Lehoczki-Krsjak S (2011) Role of fungicides, application of nozzle types, and the resistance level of wheat varieties in the control of Fusarium head blight and deoxynivalenol. Toxins 3:1453–1483. https://doi.org/10.3390/toxins3111453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Qiu J, Shi J (2014) Genetic relationships, carbendazim sensitivity and mycotoxin production of the Fusarium graminearum populations from maize, wheat and rice in Eastern China. Toxins 6:2291–2309. https://doi.org/10.3390/toxins6082291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Umpiérrez-Failache M, Garmendia G, Pereyra S, Rodríguez-Haralambides A, Ward TJ, Vero S (2013) Regional differences in species composition and toxigenic potential among Fusarium head blight isolates from Uruguay indicate a risk of nivalenol contamination in new wheat production areas. Int J Food Microbiol 166:135–140. https://doi.org/10.1016/j.ijfoodmicro.2013.06.029

    Article  PubMed  Google Scholar 

  48. Yang Y, Li MX, Duan YB, Li T, Shi YY, Zhao DL, Zhou MG (2018) A new point mutation in β 2-tubulin confers resistance to carbendazim in Fusarium asiaticum. Pestic Biochem Physiol 145:15–21

    Article  CAS  Google Scholar 

  49. Sevastos A, Kalampokis IF, Panagiotopoulou A, Pelecanou M, Aliferis KA (2018) Implication of Fusarium graminearum primary metabolism in its resistance to benzimidazole fungicides as revealed by 1H NMR metabolomics. Pestic Biochem Phys 148:50–61. https://doi.org/10.1016/j.pestbp.2018.03.015

    Article  CAS  Google Scholar 

  50. Zhou Y, Xu J, Zhu Y, Duan Y, Zhou M (2016) Mechanism of action of the benzimidazole fungicide on Fusarium graminearum: interfering with polymerization of monomeric tubulin but not polymerized microtubule. Dis Control Pest Manag 106:807–813. https://doi.org/10.1094/PHYTO-08-15-0186-R

    Article  CAS  Google Scholar 

  51. Chen Y, Zhang A, Gao T, Zhang Y, Wang W (2012) Integrated use of pyraclostrobin and epoxiconazole for the control of Fusarium head blight of wheat in Anhui Province of China. Plant Dis 96:1495–1500. https://doi.org/10.1094/PDIS-01-12-0099-RE

    Article  CAS  PubMed  Google Scholar 

  52. Duan Y, Zhang X, Ge C, Wang Y, Cao J, Jia X, Wang J, Zhou M (2014) Development and application of loop-mediated isothermal amplification for detection of the F167Y mutation of carbendazim-resistant isolates in Fusarium graminearum. Sci Rep 4:1–8. https://doi.org/10.1038/srep07094

    Article  CAS  Google Scholar 

  53. Avozani A, Tonin RB, Reis EM, Camera J, Ranzi C (2014) In vitro sensitivity of Fusarium graminearum isolates to fungicides. Summa Phytopathol 40:231–247. https://doi.org/10.1590/0100-5405/1891

    Article  Google Scholar 

  54. McMullen M, Bergstrom G, Wolf ED, Dill-Macky R, Hershman D, Shaner G, Sanford DV (2012) A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Phytopathology 96:1712–1728. https://doi.org/10.1094/PDIS-03-12-0291-FE

    Article  Google Scholar 

  55. Mesterhazy A, Bartok T, Lamper C (2003) Influence of wheat cultivar, species of Fusarium, and isolate agressiveness on the efficiancy of fungicides for control of Fusarium head blight. Plant Dis 87:1107–1115. https://doi.org/10.1094/PDIS.2003.87.9.1107

    Article  CAS  PubMed  Google Scholar 

  56. Klix MB, Verreet JA, Beyer M (2007) Comparison of the declining triazole sensitivity of Gibberella zeae and increased sensitivity achieved by advances in triazole fungicide development. Crop Protect 26:683–690. https://doi.org/10.1016/j.cropro.2006.06.006

    Article  CAS  Google Scholar 

  57. Yang Y, Li MX, Duan YB, Li T, Shi YY, Zhao DL, Zhou ZH, Xin WJ, Wu J, Pan XY, Li YJ, Zhu YY, Zhou MG (2018) A new point mutation in β2-tubulin confers resistance to carbendazim in Fusarium asiaticum. Pestic Biochem Physiol 145:15–21. https://doi.org/10.1016/j.pestbp.2017.12.006

    Article  CAS  PubMed  Google Scholar 

  58. Liu Y, Chen X, Jiang J, Hamada MS, Yin Y, Ma Z (2013) Detection and dynamics of different carbendazim-resistance conferring β-tubulin variants of Fusariosis zeae collected from infected wheat heads and rice stubble in China. Pest Manag Sci 70:1228–1236

    Article  Google Scholar 

  59. Lucas JA, Nichola JH, Fraaije BA (2015) The evolution of fungicide resistance. Adv Appl Microbiol 90:29–64. https://doi.org/10.1016/bs.aambs.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  60. Vučajnk F, Trdan S, Leskošek G, Košir IJ, Sreš A, Ačko DK, Vidrih M (2018) Head and leaf fungicide deposit on winter wheat, deoxynivalenol content and yield parameters as affected by different nozzle types. Cereal Res Commun 46:321–332. https://doi.org/10.1556/0806.46.2018.13

    Article  CAS  Google Scholar 

  61. Dubos T, Pasquali M, Pogoda F, Hoffmann L, Beyer M (2011) Evidence for natural resistance towards trifloxystrobin in Fusarium graminearum. Eur J Plant Pathol 130:239–248. https://doi.org/10.1007/s10658-011-9749-7

    Article  Google Scholar 

  62. Audenaert K, Callewaert E, Höfte M, De Saeger S, Haesaert G (2010) Hydrogen peroxide induced by the fungicide prothioconazole triggers deoxynivalenol (DON) production by Fusarium graminearum. BMC Microbiol 10:1–14

    Article  Google Scholar 

  63. Fan J, Urban M, Parker JE, Brewer HC, Kelly SL, Hammond-Kosack KE, Fraaije BA, Liu X, Cools HJ (2013) Characterization of the sterol 14a-demethylases of Fusarium graminearum identifies a novel genus-specific CYP51 function. New Phytol 198:821–835. https://doi.org/10.1111/nph.12193

    Article  CAS  PubMed  Google Scholar 

  64. Moretti A, Pascale M, Logrieco AF (2018) Mycotoxin risks under a climate change scenario in Europe. Trends Food Sci Technol 84:38–40. https://doi.org/10.1016/j.tifs.2018.03.008

    Article  CAS  Google Scholar 

  65. Castañares E, Martínez M, Cristos D, Rojas D, Lara B, Stenglein S, Dinolfo MI (2019) Fusarium species and mycotoxin contamination in maize in Buenos Aires Province, Argentina. Eur J Plant Pathol 155:1265–1275. https://doi.org/10.1111/ppa.12470

    Article  CAS  Google Scholar 

  66. Dweba CC, Figlan S, Shimelis HA, Motaung TE, Sydenham S, Mwadzingeni L, Tsilo TJ (2017) Fusarium head blight of wheat: pathogenesis and control strategies. Crop Protect 91:114–122. https://doi.org/10.1016/j.cropro.2016.10.002

    Article  CAS  Google Scholar 

  67. Van Der Lee T, Zhang H, Van Diepeningen A, Waalwijk C (2015) Biogeography of Fusarium graminearum species complex and chemotypes: a review. Food Addit Contam A 32:453–460. https://doi.org/10.1080/19440049.2014.984244

    Article  CAS  Google Scholar 

  68. Pleadin J, Vahcic N, Persi N, Sevelj D, Markov K, Frece J (2013) Fusarium mycotoxins occurrence in cereals harvested from Croatian fields. Food Control 32:49–54. https://doi.org/10.1016/j.foodcont.2012.12.002

    Article  CAS  Google Scholar 

  69. Tima H, Brückner A, Mohácsi-Farkas C, Kiskó G (2016) Fusarium mycotoxins in cereals harvested from Hungarian fields. Food Addit Contam B 9:127–213. https://doi.org/10.1080/19393210.2016.1151948

    Article  CAS  Google Scholar 

  70. Khaneghaha AM, Fakhrib Y, Gahruiec HH, Niakousaric M, Sant’Ana AS (2019) Mycotoxins in cereal-based products during 24 years (1983–2017): a global systematic review. Trends Food Sci Technol 91:95–105. https://doi.org/10.1016/j.tifs.2019.06.007

    Article  CAS  Google Scholar 

  71. Mallmann CA, Dilkin P, Mallmann AO, Oliveira MS, Adaniya ZNC, Tonini C (2017) Prevalence and levels of deoxynivalenol and zearalenone in commercial barley and wheat grain produced in Southern Brazil: an eight-year (2008 to 2015) summary. Trop Plant Pathol 42:146–152. https://doi.org/10.1007/s40858-017-0152-6

    Article  Google Scholar 

  72. Kos J, Hajnal EJ, Šarić B, Jovanov P, Nedeljković N, Milovanović I, Krulj J (2017) The influence of climate conditions on the occurrence of deoxynivalenol in maize harvested in Serbia during 2013–2015. Food Control 73:734–740. https://doi.org/10.1016/j.foodcont.2016.09.022

    Article  CAS  Google Scholar 

  73. Paul PA, McMullen MP, Hershman DE, Madden LV (2010) Meta-analysis of the effects of triazole-based fungicides on wheat yield and test weight as influenced by Fusarium head blight intensity. Phytopathology 100:160–171. https://doi.org/10.1094/phyto-100-2-0160

    Article  CAS  PubMed  Google Scholar 

  74. Mesterházy Á, Varga M, Tóth B, Kótai C, Bartók T, Véha A, Ács K, Vágvölgyi C, Lehoczki-Krsjak S (2018) Reduction of deoxynivalenol (DON) contamination by improved fungicide use in wheat. Part 2. Farm scale tests with different nozzle types and updating the integrated approach. Eur J Plant Pathol 151:1–20. https://doi.org/10.1007/s10658-017-1347-x

    Article  CAS  Google Scholar 

  75. Duan Y, Xiao X, Li T, Chen W, Wang J, Fraaije BA, Zhou M (2018) Impact of epoxiconazole on Fusarium head blight control, grain yield and deoxynivalenol accumulation in wheat. Pestic Biochem Physiol 152:138–147. https://doi.org/10.1016/j.pestbp.2018.09.012

    Article  CAS  PubMed  Google Scholar 

  76. Zhou Z, Duan Y, Zhou M (2020) Carbendazim-resistance associated β2-tubulin substitutions increase deoxynivalenol biosynthesis by reducing the interaction between β2-tubulin and IDH3 in Fusarium graminearum. Environ Microbiol 22:598–614. https://doi.org/10.1111/1462-2920.14874

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordination for the Improvement of Higher Education Personnel—Brazil (CAPES)—Finance Code 001, and by National Council for Technological Development (CNPq)—Universal Notice 2018. A. M. Fuentefria is grateful to CNPq for a PQ scholarship. To CONIF and SETEC for financial support.

Author information

Authors and Affiliations

Authors

Contributions

MAdC (idea, collection, data analysis, writing and critical analysis of scientific articles); PR (idea, collection, data analysis and writing), BSdC (collection, data analysis and writing), RIdPeMLT (writing review and support in image editing); AMF (idea, funding acquisition, supervision, and review of writing).

Corresponding author

Correspondence to Magda Antunes de Chaves.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical Approval

Not applicable.

Consent for Publication

Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Chaves, M.A., Reginatto, P., da Costa, B.S. et al. Fungicide Resistance in Fusarium graminearum Species Complex. Curr Microbiol 79, 62 (2022). https://doi.org/10.1007/s00284-021-02759-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-021-02759-4

Navigation