Skip to main content
Log in

Pedobacter segetis sp. nov., a Novel Bacterium Isolated from Soil

  • 'Open Collection': Novel Prokaryotic Taxa
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Gram-negative, motile by gliding, rod-shaped, aerobic bacterium, designated SD-bT, was isolated from a soil sample collected on Dokdo Island, South Korea. A polyphasic approach based on phenotypic, phylogenetic, and genomic analyses was used to characterize the new isolate. Phylogenetic analysis of 16S rRNA gene sequence showed that strain SD-bT belonged to the family Sphingobacteriaceae and most closely related to Pedobacter psychrophilus P4487AT (95.9% similarity). The isolate contained MK-7 as the predominant respiratory quinone; its main polar lipid was phosphatidylethanolamine; and the major fatty acids were summed feature 3 (C16:1 ω7c/C16:1 ω6c; 32.0%), C15:0 iso (19.1%), C17:0 iso 3-OH (8.3%), and C16:0 (8.2%). The draft genome had a length of 3,842,102 bp with a G+C content of 36.0 mol%, predicting 3282 coding sequences, 3 rRNA genes, 3 ncRNAs, and 36 tRNAs genes. The digital DNA–DNA hybridization and average nucleotide identity values between strain SD-bT and P. psychrophilus LMG 29436T were 22.0% and 78.9%, respectively. The results of phenotypic properties, genotypic distinctiveness, and chemotaxonomic features support the discrimination of SD-bT from its phylogenetic relatives. Pedobacter segetis sp. nov. is therefore proposed with SD-bT (= KCTC 82351T = JCM 34283T) as the type strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The 16S rRNA gene sequence of strain SD-bT has been deposited in NCBI GenBank/EMBL/DDBJ under the accession number LC578312. The Whole Genome Shotgun project number of strain SD-bT in GenBank/EMBL/DDBJ is JAEHFY000000000. The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain SD-bT is LC578312. The Whole Genome Shotgun project of strain SD-bT has been deposited at GenBank/EMBL/DDBJ under the accession number JAEHFY000000000. The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Steyn PL, Segers P, Vancanneyt M, Sandra P, Kersters K, Joubert JJ (1998) Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 48:165–177. https://doi.org/10.1099/00207713-48-1-165

    Article  CAS  PubMed  Google Scholar 

  2. Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N (1983) Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose nonfermenting gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 33:580–598. https://doi.org/10.1099/00207713-33-3-580

    Article  Google Scholar 

  3. Kang H, Kim H, Joung Y, Joh K (2014) Pedobacter rivuli sp. nov., isolated from a freshwater stream. Int J Syst Evol Microbiol 64:4073–4078. https://doi.org/10.1099/ijs.0.067579-0

    Article  CAS  PubMed  Google Scholar 

  4. Mu Y, Ke Z, Feng CX, Wang XW, Wang XW, Wang HM, Chen Q, He J (2019) Pedobacter pollutisoli sp. nov., isolated from tetrabromobisphenol A-contaminated soil. Curr Microbiol 76:442–447. https://doi.org/10.1007/s00284-019-01643-6

    Article  CAS  PubMed  Google Scholar 

  5. Švec P, Králová S, Busse HJ, Kleinhagauer T, Kýrová K, Pantůček R, Mašlaňová I, Staňková E, Němec M, Holochová P, Barták M, Sedláček I (2017) Pedobacter psychrophilus sp. nov., isolated from fragmentary rock. Int J Syst Evol Microbiol 67:2538–2543. https://doi.org/10.1099/ijsem.0.001962

    Article  CAS  PubMed  Google Scholar 

  6. An DS, Kim SG, Ten LN, Cho CH (2009) Pedobacter daechungensis sp. nov., from freshwater lake sediment in South Korea. Int J Syst Evol Microbiol 59:69–72. https://doi.org/10.1099/ijs.0.001529-0

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Li J, Wang J, Wang G (2019) Pedobacter paludis sp. nov., isolated from wetland soil. Arch Microbiol 201:349–355. https://doi.org/10.1007/s00203-018-1605-0

    Article  CAS  PubMed  Google Scholar 

  8. Yang Z, Xu J, Sheng M, Qiu J, Zhu J, Zhang J, He J (2020) Pedobacter puniceum sp. nov. isolated from sludge. Curr Microbiol 77:4186–4191. https://doi.org/10.1007/s00284-020-02235-5

    Article  CAS  PubMed  Google Scholar 

  9. Park S, Park JM, Jung YT, Won SM, Yoon JH (2015) Pedobacter lignilitoris sp. nov., isolated from wood falls. Int J Syst Evol Microbiol 65:3481–3486. https://doi.org/10.1099/ijsem.0.000442

    Article  CAS  PubMed  Google Scholar 

  10. Zhou LY, Chen XY, Du ZJ, Mu DS (2019) Pedobacter chinensis sp. nov., a cellulose-decomposing bacterium from Arctic tundra soil. Int J Syst Evol Microbiol 69:1926–1933. https://doi.org/10.1099/ijsem.0.003403

    Article  CAS  PubMed  Google Scholar 

  11. Margesin R, Genus SS II, Steyn P. In: Krieg NR, Ludwig W, Whitman WB, Hedlund BP, Paster BJ et al (1998) (eds). Bergey’s manual of systematic bacteriology, vol 4, 2nd edn. Springer, New York, pp 339–351

  12. Kook M, Park Y, Yi TH (2014) Pedobacter jejuensis sp. nov., isolated from soil of a pine grove, and emended description of the genus Pedobacter. Int J Syst Evol Microbiol 64:1789–1794. https://doi.org/10.1099/ijs.0.058024-0

    Article  CAS  PubMed  Google Scholar 

  13. Leontidou K, Genitsaris S, Papadopoulou A, Kamou N, Bosmali I et al (2020) Plant growth promoting rhizobacteria isolated from halophytes and drought-tolerant plants: genomic characterisation and exploration of phyto-beneficial traits. Sci Rep 10:14857. https://doi.org/10.1038/s41598-020-71652-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morais MC, Mucha A, Ferreira H, Gonçalves B, Bacelar E et al (2019) Comparative study of plant growth-promoting bacteria on the physiology, growth and fruit quality of strawberry. J Sci Food Agr 99:5341–5349. https://doi.org/10.1002/jsfa.9773

    Article  CAS  Google Scholar 

  15. Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390. https://doi.org/10.1126/science.1112665

    Article  CAS  PubMed  Google Scholar 

  16. Wilson K (1997) Preparation of genomic DNA from bacteria. In: Ausubel FM, et al (eds) Current protocols in molecular biology. Wiley, New York, pp 2.4.1–2.4.5

  17. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. https://doi.org/10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  20. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  21. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  22. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/BF01734359

    Article  CAS  PubMed  Google Scholar 

  23. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416. https://doi.org/10.2307/2412116

    Article  Google Scholar 

  24. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  26. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

    Google Scholar 

  27. Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070. https://doi.org/10.1099/00207713-52-3-104

    Article  CAS  PubMed  Google Scholar 

  28. Cappuccino JG, Sherman N (2010) Microbiology: a laboratory manual, 9th edn. Benjamin Cummings, San Francisco

    Google Scholar 

  29. Chhetri G, Yang D, Choi J, Kim H, Seo T (2019) Flavobacterium edaphi sp. nov., isolated from soil from Jeju Island. Korea Arch Microbiol 201:539–545. https://doi.org/10.1007/s00203-018-1593-0

    Article  CAS  PubMed  Google Scholar 

  30. Behera BC, Parida S, Dutta SK, Thatoi HN (2014) Isolation and identification of cellulose degrading bacteria from mangrove soil of Mahanadi river delta and their cellulase production ability. Am J Microbiol Res 2:41–46. https://doi.org/10.12691/ajmr-2-1-6

    Article  Google Scholar 

  31. Joung Y, Jang HJ, Song J, Cho JC (2019) Flavobacterium hydrophilum sp. nov. and Flavobacterium cheongpyeongense sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 69:602–609. https://doi.org/10.1099/ijsem.0.003083

    Article  CAS  PubMed  Google Scholar 

  32. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241. https://doi.org/10.1016/0167-7012(84)90018-6

    Article  CAS  Google Scholar 

  33. Komagata K, Suzuki KI (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–205. https://doi.org/10.1016/S0580-9517(08)70410-0

    Article  CAS  Google Scholar 

  34. Ten LN, Jeon J, Elderiny NS, Kim MK, Lee SY, Jung HY (2020) Lysobacter segetis sp. nov., isolated from soil. Curr Microbiol 200:166–172. https://doi.org/10.1007/s00284-019-01801-w

    Article  CAS  Google Scholar 

  35. Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by high performance liquid chromatography and photodiode array detection. J Gen App Microbiol 42:457–469. https://doi.org/10.2323/jgam.42.457

    Article  CAS  Google Scholar 

  36. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc, Netwark

  37. Bruzek S, Vestal G, Lasher A, Lima A, Silbert S (2020) Bacterial whole genome sequencing on the Illumina iSeq 100 for clinical and public health laboratories. J Mol Diagn 22:1419–1429. https://doi.org/10.1016/j.jmoldx.2020.09.003

    Article  CAS  PubMed  Google Scholar 

  38. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al (2018) RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 46:D851–D860. https://doi.org/10.1093/nar/gkx1068

    Article  CAS  PubMed  Google Scholar 

  41. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624. https://doi.org/10.1093/nar/gkw569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. https://doi.org/10.1093/nar/gkm160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lowe TM, Chan PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44:W54–W57. https://doi.org/10.1093/nar/gkw413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286. https://doi.org/10.1007/s10482-017-0844-4

    Article  CAS  PubMed  Google Scholar 

  45. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60. https://doi.org/10.1186/1471-2105-14-60

    Article  Google Scholar 

  46. Xu L, Dong Z, Fang L, Luo Y, Wei Z et al (2019) OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 47:W52–W58. https://doi.org/10.1093/nar/gkz333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849. https://doi.org/10.1099/00207713-44-4-846

    Article  CAS  Google Scholar 

  48. Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

    Google Scholar 

  49. Meier-Kolthoff JP, Klenk HP, Göker M (2014) Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 64:352–356. https://doi.org/10.1099/ijs.0.056994-0

    Article  CAS  PubMed  Google Scholar 

  50. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Brain Pool Program (Grant No. 2020H1D3A2A01103925) through the National Research Foundation (NRF) funded by the Ministry of Science and ICT, Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. LNT analyzed the data and wrote the manuscript, WL performed the experiments and wrote the manuscript, SMH carried out polar lipid analysis and API tests, MKK analyzed chemotaxonomic data, SYL performed 16S rRNA phylogeny, HYJ designed, planned the study, and reviewed the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Hee-Young Jung.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 563 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ten, L.N., Li, W., Hong, SM. et al. Pedobacter segetis sp. nov., a Novel Bacterium Isolated from Soil. Curr Microbiol 79, 71 (2022). https://doi.org/10.1007/s00284-021-02753-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-021-02753-w

Navigation