Skip to main content
Log in

Extracellular Antifungal Activity of Chitinase-Producing Bacteria Isolated From Guano of Insectivorous Bats

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A reduction in the use of agrochemicals requires the development of either alternatives or complementary control methods in order to limit their dangerousness. An alternative is the biological control of fungi by bacteria. The fungal cell wall is a unique structure of the fungi, composed of glucan, chitin, and glycoproteins. Therefore, bacteria producing mycolytic enzymes, like chitinases, are of great interest to degrade fungal cell-wall components. The objectives of this work were to isolate chitinolytic bacteria from the guano of insectivorous bats (Tadarida brasiliensis) and to verify the presence of antifungal activities against phytopathogenic fungi. From the guano samples, 28 bacterial isolates were obtained, 70% of which presented chitinolytic activity. Four isolates were selected since they showed the highest values of chitinase activity, and they were characterized as belonging to Bacillus genus, by analyzing the 16S ribosomal RNA gene sequence. Cell-free supernatants of bacterial cultures were used in inhibition tests on 16 fungi: Alternaria and Colletotrichum acutatum were the most affected. Chitinase and antifungal activities were observed in the cell-free supernatant regardless of the culture medium used. Both activities were stable to heat and proteinase K treatments. Finally, when the culture medium was supplemented with 1 ml of cell-free supernatants (0.33%) and incubated for 120 h, the inhibition of hyphae formation and germination spores of reporter fungus were observed under light microscopy. These results suggest the feasibility of using cell-free supernatants as eco-friendly fungicides. The use of them may contribute to reducing the dose of toxic chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. FHIA (2007) http://www.fhia.org.hn/dowloads/fhia_informa/fhiainfdic2007.pdf. Accessed 2 Jun 2021

  2. Alori ET, Babalola OO (2018) Microbial Inoculants for improving crop quality and human health in Africa. Front Microbiol. https://doi.org/10.3389/fmicb.2018.02213

    Article  PubMed  PubMed Central  Google Scholar 

  3. Berini F, Katz C, Gruzdev N, Casartelli M, Tettamanti G, Marinelli F (2018) Microbial and viral chitinases: attractive biopesticides for integrated pest management. Biotechnol Adv 36(3):818–838. https://doi.org/10.1016/j.biotechadv.2018.01.002

    Article  CAS  PubMed  Google Scholar 

  4. Van Wambeke E (2007) Combinations of reduced rates of 1,3-dichloropropene and dazomet as a broad spectrum soil fumigation strategy in view of methyl bromide replacement. Commun Agric Appl Biol Sci 72:61–70

    PubMed  Google Scholar 

  5. Paoletti MG (1999) The role of earthworms for assessment of sustainabilityand as bioindicators. Agric Ecosyst Environ 74:137–155. https://doi.org/10.1016/S0167-8809(99)00034-1

    Article  Google Scholar 

  6. Frampton GK, Jansch S, Scott-Fordsmand JJ, Römbke J, Van den Brink PJ (2006) Effects of pesticides on soil invertebrates in laboratory studies: a review and analysis using species sensitivity distributions. Environ Toxicol Chem 25(9):2480–2489. https://doi.org/10.1897/05-438r.1

    Article  CAS  PubMed  Google Scholar 

  7. Siemiatycki J, Richardson L, Straif K, Latreille B, Lakhani R, Campbell S, Rousseau MC, Boffetta P (2004) Listing occupational carcinogens. Environ Health Perspect 112(15):1447–1459. https://doi.org/10.1289/ehp.7047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu Y, Tao J, Yan YJ, Li B, Li H, Li C (2011) Biocontrol efficiency of Bacillus subtilis SL-13 and characterization of an antifungal chitinase. Biotechnol Bioeng Chin J Chem Eng 19:128–134. https://doi.org/10.1016/S1004-9541(09)60188-9

    Article  CAS  Google Scholar 

  9. Kim HJ, Choi HS, Yang SY, Kim IS, Yamaguchi T, Sohng JK, Park SK, Kim JC, Lee CH, Gardener BM, Kim YC (2014) Both extracellular chitinase and a new cyclic lipopeptide, chromobactomycin, contribute to the biocontrol activity of Chromobacterium sp. C61. Mol Plant Pathol 15(2):122–32. https://doi.org/10.1111/mpp.12070

    Article  CAS  PubMed  Google Scholar 

  10. Whitaker JO, Dannelly HK, Prentice DA (2004) Chitinase in insectivorous bats. J Mammal 85:15. https://doi.org/10.1644/1545-1542(2004)085%3c0015:CIIB%3e2.0.CO;2

    Article  Google Scholar 

  11. Spizizen J (1958) Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc Natl Acad Sci USA 44:1072–1078. https://doi.org/10.1073/pnas.44.10.1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hsu S, Lockwood J (1975) Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl Microbiol 29:422–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yanai K, Takaya N, Kojima N, Horiuchi H, Ohta A, Takagi M (1992) Purification of two chitinases from Rhizopus oligo- sporus and isolation and sequencing of the encoding genes. J Bacteriol 174(22):7398–7406. https://doi.org/10.1128/jb.174.22.7398-7406.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  15. Martínez MA, Delgado OD, Breccia JD, Baigorí MD, Siñeriz F (2002) Revision of the taxonomic position of the xylanolytic Bacillus sp MIR32 reidentified as Bacillus halodurans and plasmid-mediated transformation of B. halodurans species. Extremophiles 6(5):391–395. https://doi.org/10.1007/s00792-002-0269-4

    Article  CAS  PubMed  Google Scholar 

  16. Irulan A, Nathan YP, Priya G, Marimuthu G, Elangovan V (2011) Isolation and characterization of chitinase producing gut microflora of insectivorous bats. Trends Biosci 4:8–11

    Google Scholar 

  17. Shang-Hsin G, Jeen-Kuan C, Wen-Chien L (2004) Purification and characterization of extracellular chitinase from Aeromonas schubertii Taiwan. Enzyme Microb Technol 35:550–556. https://doi.org/10.1016/j.enzmictec.2004.08.025

    Article  CAS  Google Scholar 

  18. Sastoque- Cala L, Mercado-Reyes M, Martínez-Salgado M, Quevedo-Hidalgo B, Pedroza-Rodríguez A (2007) Producción de quitinasas extracelulares con una cepa alcalófila halotolerante de Streptomyces sp. aislada de residuos de camarón. Rev Mex Ing Qca 6:137–146

    Google Scholar 

  19. Veliz E, Martínez-Hidalgo P, Hirsch AM (2017) Chitinase-producing bacteria and their role in biocontrol. AIMS Microbiol 3(3):689–705. https://doi.org/10.3934/microbiol.2017.3.689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jeyaram K, Wahengbam R, Thangjam AS, Gbenga AA, Khundrakpam B, Folarin AO (2011) Distinct differentiation of closely related species of group with industrial importance. J Microbiol Methods 87(2):161–164. https://doi.org/10.1016/j.mimet.2011.08.011

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura LK (1989) Taxonomic relationship of black pigmented Bacillus subtilis strains and a proposal for Bacillus atrophaeus sp. Int J Syst Bacteriol 39:295–300. https://doi.org/10.1099/00207713-39-3-295

    Article  Google Scholar 

  22. Mabuchi N, Araki Y (2001) Cloning and sequencing of two genes encoding chitinases A and B from Bacillus cereus CH. Can J Microbiol 47(10):895–902. https://doi.org/10.1139/w01-093

    Article  CAS  PubMed  Google Scholar 

  23. Sato Y, Araki Y (2007) Analysis of ChiA and ChiB production by Bacillus cereus CH: induction, gene expression, and localization of two chitinase. J Environ Biotechnol 7:27–32

    Google Scholar 

  24. Sato Y, Araki Y (2008) Identification of Inducers for chitinase B (ChiB) production in Bacillus cereus CH and estimation of its induction mechanism. J Environ Biotechnol 8:119–121

    Google Scholar 

  25. Mayorga-Reyes L, Calderón-Garza E, Gutiérrez-Nava A, González-Cervantes R, Azaola-Espinosa A, Barranco-Florido E (2012) Characterization and expression of the chitinase chit II gene from Lecanicillium lecanii in solid-state fermetnation. Rev Mex Ing Quím 11:97–104. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-27382012000100008&lng=es&tlng=. Accessed 2 Jun 2021

  26. Gomaa EZ (2012) Chitinase Production by Bacillus thuringiensis and Bacillus licheniformis: their potential in antifungal biocontrol. J. Microbiol 50(1):103–111. https://doi.org/10.1007/s12275-012-1343-y

    Article  CAS  PubMed  Google Scholar 

  27. Driss F, Kallassy-Awad M, Zouari N, Jaoua S (2005) Molecular characterization of a novel chitinase from Bacillus thuringiensis subsp. kurstaki. J Appl Microbiol 99(4):945–953. https://doi.org/10.1111/j.1365-2672.2005.02639.x

    Article  CAS  PubMed  Google Scholar 

  28. Huang CJ, Wang TK, Chung SC, Chen CY (2005) Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28–9. J Biochem Mol Biol 38(1):82–8. https://doi.org/10.5483/BMBRep.2005.38.1.082

    Article  CAS  PubMed  Google Scholar 

  29. De la Vega LM, Barboza-Corona JE, Aguilar-Uscanga MG, Ramirez-Lepe M (2006) Purification and characterization of an exochitinase from Bacillus thuringiensis subsp. Aizawai and its action against phytopathogenic fungi. Can J Microbiol 52(7):651–657. https://doi.org/10.1139/w06-019

    Article  PubMed  Google Scholar 

  30. Gurav R, Tang J, Jadhav J (2017) Novel chitinase producer Bacillus pumilus RST25 isolated from the shellfish processing industry revealed antifungal potential against phyto-pathogens. Int Biodeterior Biodegrad 125:228–234. https://doi.org/10.1016/j.ibiod.2017.09.015

    Article  CAS  Google Scholar 

  31. Rishad KS, Rebello S, Shabanamol PS, Jisha MS (2017) Biocontrol potential of, halotolerant bacterial chitinase from high yielding novel Bacillus pumilus MCB-7 autochthonous to mangrove ecosystem. Pest Biochem Physiol 137:36–41. https://doi.org/10.1016/j.pestbp.2016.09.005

    Article  CAS  Google Scholar 

  32. Dukare AS, Paul S, Asha A (2020) Isolation and efficacy of native chitinolytic rhizobacteria for biocontrol activities against Fusarium wilt and plant growth promotion in pigeon pea (Cajanus cajan L.). Egypt J Biol Pest Control 30(1):56. https://doi.org/10.1186/s41938-020-00256-7

    Article  Google Scholar 

  33. Yuli PE, Suhartono MT, Rukayadi Y, Hwang JK, Pyun YR (2004) Characteristics of thermostable chitinase enzymes from the Indonesian Bacillus sp. 13.26. Enzyme Microb Technol 35:147–215. https://doi.org/10.1016/j.enzmictec.2004.03.017

    Article  CAS  Google Scholar 

  34. Rosas-García NM, Fortuna-González JM, Barboza-Corona JE (2013) Characterization of the chitinase gene in Bacillus thuringiensis Mexican isolates. Folia Microbiol 58(6):483–90. https://doi.org/10.1007/s12223-013-0233-y

    Article  CAS  Google Scholar 

  35. Kuzu SB, Güvenmez HK, Denizci AA (2012) Production of a thermostable and alkaline chitinase by Bacillus thuringiensis subsp. kurstaki strain HBK-51. Biotechnol Res Int. https://doi.org/10.1155/2012/135498

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fira D, Dimkić I, Berić T, Lozo J, Stanković S (2018) Biological control of plant pathogens by Bacillus species. J Biotechnol 285:44–55. https://doi.org/10.1016/j.jbiotec.2018.07.044

    Article  CAS  PubMed  Google Scholar 

  37. Torres MJ, Pérez Brandan C, Sabaté DC, Petroselli G, Erra-Balsells R, Audisio MC (2017) Biological activity of the lipopeptide-producing Bacillus amyloliquefaciens PGPBacCA1 on common bean Phaseolus vulgaris L. pathogens. Biol Control 105:93–99. https://doi.org/10.1016/j.biocontrol.2016.12.001

    Article  CAS  Google Scholar 

  38. Toral L, Rodríguez M, Béjar V, Sampedro I (2018) Antifungal activity of lipopeptides from Bacillus XT1 CECT 8661 against Botrytis cinerea. Front Microbiol 9:1315. https://doi.org/10.3389/fmicb.2018.01315

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang QX, Zhang Y, He LL, Ji ZL, Tong YH (2018) Identification of a small antimycotic peptide produced by Bacillus amyloliquefaciens 6256. Pestic Biochem Physiol 150:78–82. https://doi.org/10.1016/j.pestbp.2018.07.006

    Article  CAS  PubMed  Google Scholar 

  40. Li YG, Wang RT, Liu JX, Xu LK, Ji PS, Sun L, Pan HY, Jiang BW, Li LR (2019) Identification of a biocontrol agent Bacillus vallismortis BV23 and assessment of effects of its metabolites on Fusarium graminearum causing corn stalk rot. Biocontrol Sci Techn 29:263–275. https://doi.org/10.1080/09583157.2018.1548575

    Article  Google Scholar 

  41. Wang S, Sun L, Zhang W, Chi F, Hao X, Bian J, Li Y (2020) Bacillus velezensis BM21, a potential and efficient biocontrol agent in control of corn stalk rot caused by Fusarium graminearum. Egypt J Biol Pest Control 30(1):9. https://doi.org/10.1186/s41938-020-0209-6

    Article  Google Scholar 

  42. Li Y, Cai Y, Liang Y, Ji P, Xu L (2020) Assessment of antifungal activities of a biocontrol bacterium BA17 for managing postharvest gray mold of green bean caused by Botrytis cinerea. Postharvest Biol Technol. https://doi.org/10.1016/j.postharvbio.2019.111086

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the financial assistance of CONICET. The authors also thank the Academic style (https://www.academicstyle.com.ar/correcion-estilos) for the English revision of this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design of the work. BM and VL: designed and supervised all the work. DC: carried out the sampling and all the experimental part. MM: identified the microorganisms. DD, MM and VL: drafted and prepared the original draft. The final manuscript has been read, modified and approved by all named authors.

Corresponding author

Correspondence to Villegas LB.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

CD, D., LB, V., MA, M. et al. Extracellular Antifungal Activity of Chitinase-Producing Bacteria Isolated From Guano of Insectivorous Bats. Curr Microbiol 78, 2787–2798 (2021). https://doi.org/10.1007/s00284-021-02555-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02555-0

Navigation