Skip to main content
Log in

Draconibacterium halophilum sp. nov., A Halophilic Bacterium Isolated from Marine Sediment

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Gram-stain-negative, long-rod shaped, and facultatively anaerobic bacterium, designated as strain M1T, was isolated from the marine sediment of Jeju Island, South Korea. Strain M1T was found to be catalase- and oxidase-positive, light yellow-pigmented, non-motile, and non-flagellated, growing optimally at 30 °C, pH 7.0, and in the presence of 3% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain M1T belongs to the genus Draconibacterium and is closely related to Draconibacterium orientale FH5T (97.2%), Draconibacterium sediminis JN14CK-3 T (96.5%), “Draconibacterium filum” F2T (96.5%) and Draconibacterium mangrovi GM2-18 T (96.3% sequence similarity). The values for digital DNA-DNA hybridization ranged from 37.6 to 38.3% against D. orientale FH5T, D. sediminis KN14CK-3 T, and D. mangrovi GM2-18 T, clearly indicating that strain M1T represents a distinct species of the genus Draconibacterium. Strain M1T has a 40.0% G + C content estimated by genome sequence, menaquinone 7 as the sole respiratory quinone, C15:0 anteiso and C15:0 iso as the major fatty acids, and phosphatidylethanolamine, an unidentified phospholipid, and unidentified lipids as the polar lipids. Based on the polyphasic characteristics, it is suggested that strain M1T be assigned to the genus Draconibacterium as the type strain of a novel species, for which the name Draconibacterium halophilum sp. nov. is proposed. The type strain is M1T (= KCTC 72809 T = VTCC 910107 T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ANI:

Average nucleotide identity

MA:

Marine agar

MB:

Marine broth

dDDH:

Digital DNA-DNA hybridization

AAI:

Average amino acid identity

References

  1. Du ZJ, Wang Y, Dunlap C, Rooney AP, Chen GJ (2014) Draconibacterium orientale gen. nov., sp. nov., isolated from two distinct marine environments, and proposal of Draconibacteriaceae fam nov. Int J Syst Evol Microbiol 64(Pt 5):1690–1696

    Article  CAS  Google Scholar 

  2. Du J, Lai Q, Liu Y, Dong C, Xie Y, Shao Z (2015) Draconibacterium sediminis sp. nov., isolated from river sediment. Int J Syst Evol Microbiol 65(7):2310–2314

    Article  CAS  Google Scholar 

  3. Hu Y, Guo Y, Lai Q, Dong L, Huang Z (2020) Draconibacterium mangrovi sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 70(8):4816–4821

    Article  CAS  Google Scholar 

  4. Gwak JH, Kim SJ, Jung MY, Kim JG, Roh SW, Yim KJ, Lee YJ, Kim SG, Park SJ, Rhee SK (2015) Draconibacterium filum sp. nov., a new species of the genus of Draconibacterium from sediment of the east coast of the Korean Peninsula. Antonie Van Leeuwenhoek 107(4):1049–1056

    Article  CAS  Google Scholar 

  5. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703

    Article  CAS  Google Scholar 

  6. Kim M, Cha IT, Lee KE, Lee BH, Park SJ (2021) Kineobactrum salinum sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 71(1):004586

    CAS  Google Scholar 

  7. Koh HW, Rani S, Kim SJ, Moon E, Nam SW, Rhee SK, Park SJ (2017) Halomonas aestuarii sp. nov., a moderately halophilic bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 67(11):4298–4303

    Article  CAS  Google Scholar 

  8. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1613–1617

    Article  CAS  Google Scholar 

  9. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  CAS  Google Scholar 

  10. Kimura M (1989) The neutral theory of molecular evolution and the world view of the neutralists. Genome 31(1):24–31

    Article  CAS  Google Scholar 

  11. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  Google Scholar 

  12. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 20(4):406–416

    Article  Google Scholar 

  13. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376

    Article  CAS  Google Scholar 

  14. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    Article  CAS  Google Scholar 

  15. Lefort V, Desper R, Gascuel O (2015) FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 32(10):2798–2800

    Article  CAS  Google Scholar 

  16. Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10(1):2182

    Article  Google Scholar 

  17. Konstantinidis KT, Tiedje JM (2007) Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 10(5):504–509

    Article  CAS  Google Scholar 

  18. Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187(18):6258–6264

    Article  CAS  Google Scholar 

  19. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60

    Article  Google Scholar 

  20. Bowman JP (2000) Description of Cellulophaga algicola sp. Nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50(5):1861–1868

    Article  CAS  Google Scholar 

  21. Reichenbach H (1992) The order Cytophagales. In: Balows Albert, Trüper Hans G, Dworkin Martin, Harder Wim, Schleifer Karl-Heinz (eds) The prokaryotes. Springer, New York, pp 3631–3675

    Chapter  Google Scholar 

  22. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

    Google Scholar 

  23. Hu HY, Fujie K, Urano K (1999) Development of a novel solid phase extraction method for the analysis of bacterial quinones in activated sludge with a higher reliability. J Biosci Bioeng 87(3):378–382

    Article  CAS  Google Scholar 

  24. Koh HW, Hong H, Min UG, Kang MS, Kim SG, Na JG, Rhee SK, Park SJ (2015) Rhodanobacter aciditrophus sp. nov., an acidophilic bacterium isolated from mine wastewater. Int J Syst Evol Microbiol 65(12):4574–4579

    Article  CAS  Google Scholar 

  25. Minnikin D, O’donnell A, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett J (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2(5):233–241

    Article  CAS  Google Scholar 

  26. Minnikin D, Patel P, Alshamaony L, Goodfellow M (1977) Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Evol Microbiol 27(2):104–117

    CAS  Google Scholar 

  27. Komagata K, Suzuki K-I (1988) 4 Lipid and cell-wall analysis in bacterial systematics. In: Komagata K, Suzuki K-I (eds) Methods Microbiol, vol 19. Elsevier, Amsterdam, pp 161–207

    Google Scholar 

  28. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25(7):1043–1055

    Article  CAS  Google Scholar 

  29. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44(14):6614–6624

    Article  CAS  Google Scholar 

  30. Fang H, Kang J, Zhang D (2017) Microbial production of vitamin B12: a review and future perspectives. Microb Cell Fact 16(1):15

    Article  Google Scholar 

  31. Heal KR, Qin W, Ribalet F, Bertagnolli AD, Coyote-Maestas W, Hmelo LR, Moffett JW, Devol AH, Armbrust EV, Stahl DA, Ingalls AE (2017) Two distinct pools of B12 analogs reveal community interdependencies in the ocean. Proc Natl Acad Sci U S A 114(2):364–369

    Article  CAS  Google Scholar 

  32. Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35(Web Server issue):W52-57

    Article  Google Scholar 

  33. Xu L, Dong Z, Fang L, Luo Y, Wei Z, Guo H, Zhang G, Gu YQ, Coleman-Derr D, Xia Q, Wang Y (2019) OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 47(W1):W52–W58

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Research Foundation of Korea (No. 2020R1I1A3062110) and National Institute of Biological Resources funded by the Ministry of Environment (Nos. NIBR202102109 and NIBR202104104).

Author information

Authors and Affiliations

Authors

Contributions

MK and SJP designed the experiments. MK, KEL, and SJP performed the experiments. MK, ITC, and SJP analyzed the data and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Soo-Je Park.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The GenBank/EMBL/DDBJ accession numbers for the whole-genome sequence and 16S rRNA gene sequence of strain M1T are CP048409 and MK828353, respectively.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 1246 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Lee, KE., Cha, IT. et al. Draconibacterium halophilum sp. nov., A Halophilic Bacterium Isolated from Marine Sediment. Curr Microbiol 78, 2440–2446 (2021). https://doi.org/10.1007/s00284-021-02496-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02496-8

Navigation