Skip to main content
Log in

Antioxidant and Anti-inflammatory Metabolites of a Soil-Derived Fungus Aspergillus arcoverdensis SSSIHL-01

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Soil houses a vast array of microbial diversity. Cultured soil microbes have been a good source of many commercial drugs. In the present study, a fungal culture (SSSIHL-01) isolated from soil has been identified as Aspergillus arcoverdensis through morphology and ITS gene sequence. Extracellular culture extract and mycelial extract of the strain SSSIHL-01 were obtained using specific conditions and were evaluated for antioxidant and anti-inflammatory activities. Culture extract at 700 µg/mL concentration, showed strong DPPH free radical scavenging capacity with 95.06% comparable with the standard ascorbic acid. At 1 mg/mL concentration, mycelial extract inhibited heat induced Bovine Serum Albumin denaturation of about 31.54% compared to that of 51% produced by the standard diclofenac sodium. Chemical profiling of both the culture and mycelial extracts were investigated using gas chromatography-mass spectrometry. Some of the major compounds identified from the culture extract were 2,4-ditert-butylphenol, 1-heptacosanol, 1-octadecene, 1-nonadecene that are known to be antioxidative. Mycelial extract presented some major compounds such as ethyl linoleate, oleic acid, n-hexadecanoic acid and ethyl palmitate that are reported to exhibit anti-inflammatory activity. Thus, our study highlights the significance of Aspergillus arcoverdensis as an effective producer of antioxidant and anti-inflammatory compounds for future utility in pharmaceutical and cosmeceutical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xu LL, Cao F, Tian SS, Zhu HJ (2017) Alkaloids and polyketides from the soil fungus Aspergillus terreus and their antibacterial activities. Chem Nat Compd 53:1212–1215. https://doi.org/10.1007/s10600-017-2243-5

    Article  CAS  Google Scholar 

  2. Berdy J (2004) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  Google Scholar 

  3. Feofilova EP (2001) The kingdom fungi: heterogeneity of physiological and biochemical properties and relationships with plants, animals, and prokaryotes (review). Appl Biochem Microbiol 37:124–137

    Article  CAS  Google Scholar 

  4. Mohamed HF (2012) Molecular analysis and anticancer properties of two identified isolates, Fusarium solani and Emericella nidulans isolated from Wady El–Natron soil in Egypt against Caco–2 (ATCC) cell line. Asian Pac J Trop Biomed 2:863–869. https://doi.org/10.1016/S2221-1691(12)60244-5

    Article  PubMed  PubMed Central  Google Scholar 

  5. Abdel-Aziz MS, Ghareeb MA, Saad AM et al (2018) Chromatographic isolation and structural elucidation of secondary metabolites from the soil-inhabiting fungus Aspergillus fumigatus 3T-EGY. Acta Chromatogr 30:243–249. https://doi.org/10.1556/1326.2017.00329

    Article  CAS  Google Scholar 

  6. Al-Fakih AA, Almaqtri WQA (2019) Overview on antibacterial metabolites from terrestrial Aspergillus spp. Mycology 00:1–19. https://doi.org/10.1080/21501203.2019.1604576

    Article  CAS  Google Scholar 

  7. Vadlapudi V, Borah N, Yellusani KR et al (2017) Aspergillus secondary metabolite database, a resource to understand the secondary metabolome of Aspergillus genus. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-07436-w

    Article  CAS  Google Scholar 

  8. Lubertozzi D, Keasling JD (2009) Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 27:53–75. https://doi.org/10.1016/j.biotechadv.2008.09.001

    Article  CAS  PubMed  Google Scholar 

  9. Ibrahim SRM, Elkhayat ES, Mohamed GA et al (2015) Phytochemistry letters aspernolides F and G, new butyrolactones from the endophytic fungus Aspergillusterreus. Phytochem Lett 14:84–90. https://doi.org/10.1016/j.phytol.2015.09.006

    Article  CAS  Google Scholar 

  10. El-hawary SS, Moawad AS, Bahr HS et al (2020) Natural product diversity from the endophytic fungi of the genus Aspergillus. RSC Adv 10:22058–22079. https://doi.org/10.1039/D0RA04290K

    Article  CAS  Google Scholar 

  11. Matsuzawa T, Campos GM, Yaguchi T (2014) Aspergillus arcoverdensis, a new species of Aspergillus section Fumigati isolated from caatinga soil in State of Pernambuco. Brazil Mycoscience. https://doi.org/10.1016/j.myc.2014.04.006

    Article  Google Scholar 

  12. Zhang YJ, Zhang S, Liu XZ et al (2010) A simple method of genomic DNA extraction suitable for analysis of bulk fungal strains. Lett Appl Microbiol. https://doi.org/10.1111/j.1472-765X.2010.02867.x

    Article  PubMed  Google Scholar 

  13. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols. Elsevier, Amsterdam, pp 315–322

    Google Scholar 

  14. Arora DS, Chandra P (2011) In vitro antioxidant potential of some soil fungi: screening of functional compoundsand their purification from penicillium citrinum. Appl Biochem Biotechnol 165:639–651. https://doi.org/10.1007/s12010-011-9282-3

    Article  CAS  PubMed  Google Scholar 

  15. Yodsing N, Lekphrom R, Sangsopha W et al (2018) Secondary metabolites and their biological activity from Aspergillus aculeatus KKU-CT2. Curr Microbiol 75:513–518. https://doi.org/10.1007/s00284-017-1411-y

    Article  CAS  PubMed  Google Scholar 

  16. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci Technol 28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  17. Kumar R, Sukhvinder S, Purewal S (2017) Phenolic content, antioxidant potential and DNA damage protection of pearl millet (Pennisetum glaucum) cultivars of North Indian region. J Food Meas Charact 11:126–133. https://doi.org/10.1007/s11694-016-9379-z

    Article  CAS  Google Scholar 

  18. Kar B, Kumar RBS, Karmakar I et al (2012) Antioxidant and in vitro anti-inflammatory activities of Mimusopselengi leaves. Asian Pac J Trop Biomed 2:S976–S980. https://doi.org/10.1016/S2221-1691(12)60346-3

    Article  Google Scholar 

  19. Pham-Huy LA, He H, Pham-Huy C (2008) Free radicals, antioxidants in disease and health. Int J Biomed Sci 4:89–96

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Behera BC, Verma N, Sonone A, Makhija U (2006) Determination of antioxidative potential of lichen Usnea ghattensis in vitro. LWT—Food Sci Technol 39:80–85. https://doi.org/10.1016/j.lwt.2004.11.007

    Article  CAS  Google Scholar 

  21. Chandra S, Chatterjee P, Dey P, Bhattacharya S (2012) Evaluation of in vitro anti-inflammatory activity of coffee against the denaturation of protein. Asian Pac J Trop Biomed 2:S178–S180. https://doi.org/10.1016/S2221-1691(12)60154-3

    Article  Google Scholar 

  22. Williams LA, O’Connar A, Latore L et al (2002) Natural products in the new millennium: prospects and industrial application. Springer, Dordrecht

    Google Scholar 

  23. Tonisi S, Okaiyeto K, Hoppe H et al (2020) Chemical constituents, antioxidant and cytotoxicity properties of Leonotis leonurus used in the folklore management of neurological disorders in the Eastern Cape, South Africa. 3 Biotech 10:1–14. https://doi.org/10.1007/s13205-020-2126-5

    Article  Google Scholar 

  24. Yoon M, Jeong T, Park D et al (2006) Antioxidant effects of quinoline alkaloids and 2, 4-Di- tert -butylphenol Isolated from Scolopendra subspinipes. Biol Pharm Bull 29:735–739

    Article  CAS  Google Scholar 

  25. Faridha Begum I, Mohankumar R, Jeevan M, Ramani K (2016) GC–MS analysis of bio-active molecules derived from Paracoccus pantotrophus FMR19 and the antimicrobial activity against bacterial pathogens and MDROs. Indian J Microbiol 56:426–432. https://doi.org/10.1007/s12088-016-0609-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Young S, Seetharaman R, Jung M et al (2014) International Immunopharmacology Ethyl linoleate from garlic attenuates lipopolysaccharide-induced pro-in fl ammatory cytokine production by inducing heme oxygenase-1. Int Immunopharmacol 19:253–261. https://doi.org/10.1016/j.intimp.2014.01.017

    Article  CAS  Google Scholar 

  27. Saeed NM, El-demerdash E, Abdel-rahman HM et al (2012) Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models. Toxicol Appl Pharmacol 264:84–93. https://doi.org/10.1016/j.taap.2012.07.020

    Article  CAS  PubMed  Google Scholar 

  28. Aparna V, Dileep KV, Mandal PK et al (2012) Anti-inflammatory property of n-hexadecanoic acid: structural evidence and kinetic assessment. Chem Biol Drug Des 80:434–439. https://doi.org/10.1111/j.1747-0285.2012.01418.x

    Article  CAS  PubMed  Google Scholar 

  29. Sharma D, Pramanik A, Kumar P (2016) Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsisneglecta BAB-5510 isolated from leaves of Cupressus torulosa D. Don. 3 Biotech 6:1–14. https://doi.org/10.1007/s13205-016-0518-3

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Bhagawan Sri Sathya Sai Baba for constant motivation and support. The authors acknowledge UGC-SAP (DRS), DST-FIST and DBT-BIF, Government of India for the infrastructural support to the Department of Biosciences, SSSIHL, Prasanthi Nilayam. Skanda S is thankful to UGC, New Delhi, for the award of UGC-BSR fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Skanda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skanda, S., Vijayakumar, B.S. Antioxidant and Anti-inflammatory Metabolites of a Soil-Derived Fungus Aspergillus arcoverdensis SSSIHL-01. Curr Microbiol 78, 1317–1323 (2021). https://doi.org/10.1007/s00284-021-02401-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02401-3

Navigation