Skip to main content
Log in

Orange Bagasse Pellets as a Carbon Source for Biobutanol Production

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Due to the environmental concerns, the conversion of lignocellulosic waste can be the key to produce bioproducts and biofuels such as butanol. This study aimed to present and evaluate orange bagasse pellets (OBP) as a carbon source to produce butan-1-ol production via ABE fermentation using Clostridium beijerinckii. These bagasse pellets were characterized, holocellulose (18.99%), alfacellulose (5.37%), hemicellulose (13.62%), lignin (6.16%), pectin (7.21%), protein (3.14%), and was tested under three different pretreatments, which were the following: (a) ultrasound, (b) autohydrolysis, and (c) acid-diluted hydrolysis followed by enzymatic hydrolysis to verify an amount of fermentable total reducing sugars. ANOVA was used and pretreatments followed by enzymatic hydrolysis do not enhance a significant amount of available sugars compared to raw bagasse. The ABE fermentation was carried out in batch reactors at 37 °C under agitation of 160 rpm and anaerobic conditions, using OBP without treatment followed by enzymatic hydrolysis. Using a non-mutant microorganism, the fermentation achieved butyric acid yields of 3762.68 mg L−1 for control and 2488.82 mg L−1 for OBP and the butanol production was 63.86 mg L−1 and 196.80 mg L−1 for OBP and the control (glucose) assay, respectively. The results of this solvent’s production have shown that OBP has the potential for ABE fermentation and a promising feedstock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Matharu AS, de Melo EM, Houghton JA (2016) Opportunity for high value-added chemicals from food supply chain wastes. Bioresour Technol 215:123–130. https://doi.org/10.1016/j.biortech.2016.03.039

    Article  CAS  PubMed  Google Scholar 

  2. Liu Y, Heying E, Tanumihardjo SA (2012) History, global distribution, and nutritional importance of citrus fruits. Compr Rev Food Sci Food Saf 11:530–545. https://doi.org/10.1111/j.1541-4337.2012.00201.x

    Article  CAS  Google Scholar 

  3. Zema DA, Calabrò PS, Folino A et al (2018) Valorisation of citrus processing waste: a review. Waste Manag 80:252–273. https://doi.org/10.1016/j.wasman.2018.09.024

    Article  CAS  PubMed  Google Scholar 

  4. Neves MF, Trombin VG (2017) Anuário da Citricultura 2017

  5. Guilherme AA, Dantas PVF, Santos ES et al (2015) Evaluation od composition, characterization and enzymatic hydrolysis of pretreated sugar cane bagasse. Braz J Chem Eng 32:23–33

    Article  CAS  Google Scholar 

  6. Pugazhendhi A, Mathimani T, Varjani S, Rene ER (2019) Biobutanol as a promising liquid fuel for the future—recent updates and perspectives. Fuel 253:637–646. https://doi.org/10.1016/j.fuel.2019.04.139

    Article  CAS  Google Scholar 

  7. Qureshi N, Ezeji TC (2008) Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber. Biores Technol 9:5915–5922. https://doi.org/10.1016/j.biortech.2007.09.087

    Article  CAS  Google Scholar 

  8. Mahapatra MK, Kumar A (2017) A short review on biobutanol, a second generation biofuel production from lignocellulosic biomass. J Clean Energy Technol 5:27–30. https://doi.org/10.18178/jocet.2017.5.1.338

    Article  CAS  Google Scholar 

  9. Bellido C, Pinto ML, Coca M et al (2014) Acetone—butanol—ethanol (ABE) production by Clostridium beijerinckii from wheat straw hydrolysates: efficient use of penta and hexa carbohydrates. Bioresour Technol 167:198–205. https://doi.org/10.1016/j.biortech.2014.06.020

    Article  CAS  PubMed  Google Scholar 

  10. Algayyim SJM, Wendel AP, Yusaf T, Hamawand I (2018) Production and application of ABE as a biofuel. Renew Sustain Energy Rev 82:1195–1214. https://doi.org/10.1016/j.rser.2017.09.082

    Article  CAS  Google Scholar 

  11. TAPPI (Technical Association of Pulp and Paper Industry) Standart Method T211 om-93 (1993)—Tappi Test Methods

  12. NREL—National Renewable Energy Laboratory)—Laboratory Analytical Procedure (2018) Determination of total solids in biomass and total dissolved solid in liquid process samples

  13. Nakashima GT, Adhmann ICS, Hansted ALS et al (2016) Materiais lignocelulósicos: caracterização e produção de briquetes. Revista Virtual de Química 9:150–162

    Article  Google Scholar 

  14. Sudhakar DV, Maini SB (2000) Isolation and characterization of mango peel pectins. J Food Process Preserv 24:209–227

    Article  CAS  Google Scholar 

  15. TAPPI (Technical Association of Pulp and Paper Industry) Standart Method T222 om-02 (2002)—Tappi Test Methods

  16. TAPPI (Technical Association of Pulp and Paper Industry) Standart Method T13 om-54 (1991)—Tappi Test Methods

  17. TAPPI (Technical Association of Pulp and Paper Industry) Standart Method T257 m-85 (1985)—Tappi Test Methods

  18. TAPPI (Technical Association of Pulp and Paper Industry) Standart Method T203 om-99 (1999)—Tappi Test Methods

  19. Segal L, Creely JJ, Martin A, Conrad M (1958) Empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J. https://doi.org/10.1177/004051755902901003

    Article  Google Scholar 

  20. Amiri H, Karimi K (2015) Autohydrolysis: a promising pretreatment for the improvement of acetone, butanol, and ethanol production from woody materials. Chem Eng Sci 137:722–729. https://doi.org/10.1016/j.ces.2015.07.020

    Article  CAS  Google Scholar 

  21. Li H, Xiong L, Chen X et al (2017) Enhanced enzymatic hydrolysis and acetone-butanol-ethanol fermentation of sugarcane bagasse by combined diluted acid with oxidate ammonolysis pretreatment. Bioresour Technol 228:257–263. https://doi.org/10.1016/j.biortech.2016.12.119

    Article  CAS  PubMed  Google Scholar 

  22. Maiti S, Gallastegui G, Suresh G et al (2018) Hydrolytic pre-treatment methods for enhanced biobutanol production from agro-industrial wastes. Bioresour Technol 249:673–683. https://doi.org/10.1016/j.biortech.2017.09.132

    Article  CAS  PubMed  Google Scholar 

  23. Sun JX, Sun XF, Zhao H, Sun RC (2004) Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stab 40:7384–7386. https://doi.org/10.1016/j.polymdegradstab.2004.02.008

    Article  CAS  Google Scholar 

  24. Amiri H, Karimi K, Zilouei H (2014) Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresour Technol 152:450–456. https://doi.org/10.1016/j.biortech.2013.11.038

    Article  CAS  PubMed  Google Scholar 

  25. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  26. Moradi F, Amiri H, Soleimanian-Zad S et al (2013) Improvement of acetone, butanol and ethanol production from rice straw by acid and alkaline pretreatments. Fuel 112:8–13. https://doi.org/10.1016/j.fuel.2013.05.011

    Article  CAS  Google Scholar 

  27. Jafari Y, Amiri H, Karimi K (2016) Acetone pretreatment for improvement of acetone, butanol, and ethanol production from sweet sorghum bagasse. Appl Energy 168:216–225. https://doi.org/10.1016/j.apenergy.2016.01.090

    Article  CAS  Google Scholar 

  28. Adorno MAT, Hirasawa JS, Varesche MBA (2014) Development and validation of two methods to quantify volatile acids (C2–C6) by GC/FID: headspace (automatic and manual) and liquid-liquid extraction (LLE). Am J Anal Chem 5:406–414

    Article  Google Scholar 

  29. Zwietering MH, Jongenburger I, Rombouts FM, Van’t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881

    Article  CAS  Google Scholar 

  30. Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for production of bio-based chemicals and polymers. Polym Chem. https://doi.org/10.1039/C5PY00263J

    Article  Google Scholar 

  31. Satari B, Palhed J, Karimi K, Lundin M (2017) Process optimization for citrus waste biorefinery via simultaneous pectin extraction and pretreatment. BioResources 12:1706–1722

    Article  CAS  Google Scholar 

  32. Pourbafrani M, Forgács G, Horváth IS et al (2010) Production of biofuels, limonene and pectin from citrus wastes. Bioresour Technol 101:4246–4250. https://doi.org/10.1016/j.biortech.2010.01.077

    Article  CAS  PubMed  Google Scholar 

  33. Lohrasbi M, Pourbafrani M, Niklasson C, Taherzadeh MJ (2010) Bioresource technology process design and economic analysis of a citrus waste biorefinery with biofuels and limonene as products. Bioresour Technol 101:7382–7388. https://doi.org/10.1016/j.biortech.2010.04.078

    Article  CAS  PubMed  Google Scholar 

  34. Arthington JD, Kunkle WE, Martin AM (2002) Citrus pulp for cattle. Vet Clin 18:317–326. https://doi.org/10.1016/S0749-0720(02)00023-3

    Article  Google Scholar 

  35. Rivas-cantu RC, Jones KD, Mills PL (2013) A citrus waste-based biorefinery as a source of renewable energy: technical advances and analysis of engineering challenges. Waste Manag Res 31:413–420. https://doi.org/10.1177/0734242X13479432

    Article  CAS  PubMed  Google Scholar 

  36. Figuerola F, Hurtado ML, Estévez AM et al (2005) Food chemistry fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chem 91:395–401. https://doi.org/10.1016/j.foodchem.2004.04.036

    Article  CAS  Google Scholar 

  37. Gottumukkala LD, Haigh K, Görgens J (2017) Trends and advances in conversion of lignocellulosic biomass to biobutanol: microbes, bioprocesses and industrial viability. Renew Sustain Energy Rev 76:963–973. https://doi.org/10.1016/j.rser.2017.03.030

    Article  CAS  Google Scholar 

  38. Abidi N, Cabrales L, Haigler CH (2014) Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydr Polym 100:9–16. https://doi.org/10.1016/j.carbpol.2013.01.074

    Article  CAS  PubMed  Google Scholar 

  39. Xu F, Shi Y, Wang D (2017) X-ray scattering studies of lignocellulosic biomass: a review. Carbohydr Polym 94:904–917. https://doi.org/10.1016/j.carbpol.2013.02.008

    Article  CAS  Google Scholar 

  40. Thygesen A, Oddershede J, Lilholt H et al (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576. https://doi.org/10.1007/s10570-005-9001-8

    Article  CAS  Google Scholar 

  41. Longaresi RH, De Menezes AJ, Pereira-da-silva MA et al (2019) The maize stem as a potential source of cellulose nanocrystal: cellulose characterization from its phenological growth stage dependence. Ind Crop Prod 133:232–240. https://doi.org/10.1016/j.indcrop.2019.02.046

    Article  CAS  Google Scholar 

  42. García R, Pizarro C, Lavín AG, Bueno JL (2012) Characterization of Spanish biomass wastes for energy use. Bioresour Technol 103:249–258. https://doi.org/10.1016/j.biortech.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  43. Pan X (2008) Role of functional groups in lignina inhibition of enzymatic hydrolysis of cellulose to glucose. Biobased Mater Bioenergy 2:25–32. https://doi.org/10.1166/jbmb.2008.005

    Article  Google Scholar 

  44. Bellido C, Infante C, Coca M et al (2015) Efficient acetone-butanol-ethanol production by Clostridium beijerinckii from sugar beet pulp. Bioresour Technol 190:332–338. https://doi.org/10.1016/j.biortech.2015.04.082

    Article  CAS  PubMed  Google Scholar 

  45. Heluane H, Evans MR, Dagher SF (2011) Meta-analysis and functional validation of nutritional requirements of solventogenic clostridia growing under butanol stress conditions and coutilization of D -glucose and D -xylose. Appl Environ Microbiol 77:4473–4485. https://doi.org/10.1128/AEM.00116-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nimbalkar PR, Khedkar MA, Chavan PV, Bankar SB (2018) Biobutanol production using pea pod waste as substrate: impact of drying on sacchari fi cation and fermentation. Renew Energy 117:520–529. https://doi.org/10.1016/j.renene.2017.10.079

    Article  CAS  Google Scholar 

  47. Paniagua-garcía AI, Hijosa-valsero M, Díez-antolínez R, Sánchez ME (2018) Enzymatic hydrolysis and detoxi fi cation of lignocellulosic biomass are not always necessary for ABE fermentation: the case of Panicum virgatum. Biomass Bioenergy 116:131–139. https://doi.org/10.1016/j.biombioe.2018.06.006

    Article  CAS  Google Scholar 

  48. Ibrahim MF, Ramli N, Bahrin EK, Abd-aziz S (2017) Cellulosic biobutanol by Clostridia: challenges and improvements. Renew Sustain Energy Rev 79:1241–1254. https://doi.org/10.1016/j.rser.2017.05.184

    Article  CAS  Google Scholar 

  49. Sabra W, Groeger C, Sharma PN, Zeng A-P (2014) Improved n-butanol production by a non-acetone producing Clostridium pasteurianum DMZ 525 in mixed substrate fermentation. Appl Microbiol Biotechnol 98:4267–4276. https://doi.org/10.1007/s00253-014-5588-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jin Q, Qureshi N, Wang H, Huang H (2019) Acetone-butanol-ethanol (ABE) fermentation of soluble and hydrolyzed sugars in apple pomace by Clostridium beijerinckii P260. Fuel 244:536–544. https://doi.org/10.1016/j.fuel.2019.01.177

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Biomass and the Bioenergy Laboratory from UFSCar-Brazil for their assistance and providing equipments. The present work had no financial support by any funding organization.

Author information

Authors and Affiliations

Authors

Contributions

GFS and ICSD conceived the present idea. GFS carried out the experiments and wrote the manuscript with support from ICSD that supervised the project. JGPV, SLM, AJM, and MBAV contributed to analytical methods. GFS and TPD contributed to the final version of the manuscript. All authors made substantial contributions to concept this research.

Corresponding author

Correspondence to Gabriela Fiori da Silva.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 240 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, G.F., Mathias, S.L., de Menezes, A.J. et al. Orange Bagasse Pellets as a Carbon Source for Biobutanol Production. Curr Microbiol 77, 4053–4062 (2020). https://doi.org/10.1007/s00284-020-02245-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02245-3

Navigation